京公网安备 11010802034615号
经营许可证编号:京B2-20210330
网站数据分析的十个要点
随着数据量的大量产生及很容易获取,许多网站分析人员通过与专家、社会媒体、同等进行交流讨论分析什么样的数据才能产生有意义/价值的信息。
作为艺术与技术结合的网站分析师,不能仅依靠关键指标或者依赖于一个很炫的仪表盘。而真正的价值体现在于不断的细分网站用户,从而更好的分析用户,为他们提供个性化的服务进而实现其商业价值。
本文提供了10点细分的建议,让你的数据直接变成有价值的信息。
1、一滤、二组、三细分
虽然网站(流量)分析的数据量是海量(译者注:UV超过10万UV/天的网站网站日志、订单数据、商品数据、会员数据等每天产生的数据一般都是以G为单位原始数据。),但往往也会很容易导致一些错误的结论(译者注:大数据量意味数据内容多,但如果对于数据的收集过程或者数据本身是否有偏/不足不了解,就很容易在分析的时候做出的决定是错的)。由于JS代码的执行是在客户端(浏览器加载网页的过程中),所以有很多固有的错误是无法避免的,除非你对这些数据进行过滤处理。另外,如果不对数据进行细分,那么往往top10与TOP50列表内容各个时间段都并不太会有太大改变(译者注:对于一个流量相对稳定的公司来说,排名前面几位的一般变化不大。所以分析时候,最好看每个大类下面的TOP50,更容易发现一些数据的异常)。
2、细分客户类型
常规的用户类型:新访者、潜在用户(多次访问过访问,但没有注册)、会员、联盟客户、公司员工。不同类型的用户访问网站的行业差异性很大。会员的行为与潜在用户可能完全不一样(译者注:因为不同类型的用户来网站的目的是不一样的,会员来购买可能注是为了购买某种商品,而潜在用户可能只是来看看或者进行比比价)。会员有时候会让转化率这个指标出现虚高,往往公司内部员工的转化率会比较高。
3、对渠道类型进行划时代
渠道类型主要分为:付费与自然流量;付费媒体与免费媒体,内部与外部广告,以及联盟。很多网站分析工具提供的基本的流量细分报告,但如果没有另外再加入跟踪代码,可能很难超越的三种基本类型。
一些关键流量渠道细分必须考虑加入一些代码包括:如果一些社会化渠道来源(一些人分析你网站的内容的转贴或者发贴),自有社会化媒体的渠道(像在youtube或者facebook上官方主页之类;付费或者自然搜索;自然的引用链接(像别的网站转载你的内容然后会加上原文链接),一般网站链接的交换。否则这些渠道的流量跟踪可能会无法统计。
4、仔细检查自然流量加的代码
许多网站的自然流量往往是不可信因为加入的代码往往质量很差。请仔细检验你的邮箱、社会媒体、重定位或者手机流量的监测代码是否准备且完全正确的,这样才能对更准备去判断是否统计的自然输入是真的直接输入。
5、通过意向对内容进行细分
网站的用户可以分为:研究、购买、重复购买、谈判、推荐。不对的人对于内容的印象是不一样的,所以利用这些相同的内容定位命名为你的网站分析报告。随着时间的推移,通过构建一个好的购买流程漏斗:包括:研究、游客,购买,交易和/或更新,从而不断的够优化用户体验。
6、利用有意义的的方法划分产品类型
就像你通过内容来细分目的,为了更好追求从而更好的分析/识别业务上产品的配置便于作的扩展分析。
7、跨平台的整合数据
网站分析数据不应该被交易数据所替代,整合不同的数据源用于理解的分析或者记录的信息的区别。从记录的信息中得出结果,二者并不相等,信息并表示结论。
8、更贴近你的客户
许多在报告中呈现的专业术语与科学术语似乎与商业股东的利益没有明显的相关。转变报告的内容表达从而更好走向你的“听众”,让他们更好的理解报告。
9、为每一个推测建议目标并检验这些预测
一个好的网站分析师通过假设、以及从数据中发现的规则来对未来的趋势做出预测,基于对于整个市场的趋势做出研判。一个伟大的网站分析师可以给猜测一个合适的解释,从而可以为下一步月度、季度、年度去评估这些预测的目标。
10、把商业驱动与细分&指标联系在一起
您的业务主要集中在积极的收购重点产品?开始分割你的数据,包括关键的发现,围绕该焦点。
你报告的听众是否持续深入的进一步你的用户服务行为,而不是仅仅把焦点集中的新用户服务、潜在客户的细分上。与业务相一致,以及注意各类细节,从而让你的分析你的听众愿意接受分析,并保持开放。
总结
虽然很少人可以完全掌握并使用这些要点,然后对于是作为艺术与技术结合的网站分析师来说,我们应该都要知道每一项细分都影响商业价值的实现。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17