
大数据在企业互联网转型中的应用
如何利用大数据做好会员营销?利用大数据如何连接消费者打造互动O2O闭环?12月26日海量大数据研习社第六次聚会上,兮易咨询董事合伙人顾骏分享了大数据在传统企业落地的一些实际案例。
大数据时代的到来:得“需求链”者得天下
传统企业销售分为三个时代:1.0实体店商、2.0PC为主体互联网电商、3.0移动互联网互动产品/服务/营销。
三个时代的考核指标:1.0时代考核渠道出货量,2.0时代考核店铺的人流量、转化率及客单价,3.0时代关注人——基于大数据的用户细分。
互联网思维即用户思维,围绕消费者展开的大数据洞察,将成为未来企业竞争决胜的决定性力量。
未来,零售企业的供应链是将产品推到消费者看的到、拿的到的地方。需求链是找到消费者的痛点,创造需求,掌握”需求链”即掌握话语权。
大数据与会员营销的实践
如何运用大数据通过存量客户的精准营销转亏为赢?通过大数据的方式将市场进行细分,其标签可分为8个类型:地理位置、人口特征、价值潜力、使用场合、购买行为、需求动机、个性态度和生活动式。
其中前5类数据是结构化数据,属于低维标签,比较容易获得,而后3类数据是一般是非结构化的,属于高维标签,获取难度及成本较高。对消费者的理解即由这8个方面构成,品牌对高维标签的理解程度越深,越具竞争力。
未来的竞争将打破行业限制,争夺的将是消费者的时间和注意力。品牌对购买行为、需求动机、个性态度和生活动式,这3类高维度标签的理解更为重要,大数据才有了用武之地。
传统的市场营销方式,简单地将消费者按照客单收入进行分类。而大数据挖掘关键方法,则在于寻找相关性标签,用户价值分群的革命性变化——聚类与质心。
以某链锁零售品牌为例,将用户通过标签为分7类,针对不同类型客户制定不同的营销活动和产品组合,帮助转化率进一步提升。实现了单月同期销售额增涨133%,老客户单月同期销售额增涨100%,增量近亿元。
下一代的互联网发展趋势:大数据与互动O2O的闭环
互联网时代下,“用户信息”成为像“人、财、物”一样重要的资产可以被经营,并通过大数据能力获得超出预期的企业利润。
通过用户信息为业务创造价值的时代已经到来,但是企业是否真正意识到用户信息的重要性?企业通过购买流量提升销售额的同时,却忽略了到店未转化客户的信息。企业应以此审视自己的业务流程,丧失掉多少获得用户信息的机会。
以某连锁零售品牌为例,遇到发展瓶颈,沉睡会员率高,会员复购率低。店铺经营转为用户经营,半年内实现流失客户挽回4%,睡眠客户激活6%,活跃客户增加10%。
未来营销组织发生方向:用户企划组、互动营销组、内容编辑组、大数据技术组。
用户企划组:站在消费者的角度研究消费者,研究群体需要的产品、用什么内容与群体沟通、群体的购买环境、能够提供的增值服务,获得分人群的预算。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23