
大数据在企业互联网转型中的应用
如何利用大数据做好会员营销?利用大数据如何连接消费者打造互动O2O闭环?12月26日海量大数据研习社第六次聚会上,兮易咨询董事合伙人顾骏分享了大数据在传统企业落地的一些实际案例。
大数据时代的到来:得“需求链”者得天下
传统企业销售分为三个时代:1.0实体店商、2.0PC为主体互联网电商、3.0移动互联网互动产品/服务/营销。
三个时代的考核指标:1.0时代考核渠道出货量,2.0时代考核店铺的人流量、转化率及客单价,3.0时代关注人——基于大数据的用户细分。
互联网思维即用户思维,围绕消费者展开的大数据洞察,将成为未来企业竞争决胜的决定性力量。
未来,零售企业的供应链是将产品推到消费者看的到、拿的到的地方。需求链是找到消费者的痛点,创造需求,掌握”需求链”即掌握话语权。
大数据与会员营销的实践
如何运用大数据通过存量客户的精准营销转亏为赢?通过大数据的方式将市场进行细分,其标签可分为8个类型:地理位置、人口特征、价值潜力、使用场合、购买行为、需求动机、个性态度和生活动式。
其中前5类数据是结构化数据,属于低维标签,比较容易获得,而后3类数据是一般是非结构化的,属于高维标签,获取难度及成本较高。对消费者的理解即由这8个方面构成,品牌对高维标签的理解程度越深,越具竞争力。
未来的竞争将打破行业限制,争夺的将是消费者的时间和注意力。品牌对购买行为、需求动机、个性态度和生活动式,这3类高维度标签的理解更为重要,大数据才有了用武之地。
传统的市场营销方式,简单地将消费者按照客单收入进行分类。而大数据挖掘关键方法,则在于寻找相关性标签,用户价值分群的革命性变化——聚类与质心。
以某链锁零售品牌为例,将用户通过标签为分7类,针对不同类型客户制定不同的营销活动和产品组合,帮助转化率进一步提升。实现了单月同期销售额增涨133%,老客户单月同期销售额增涨100%,增量近亿元。
下一代的互联网发展趋势:大数据与互动O2O的闭环
互联网时代下,“用户信息”成为像“人、财、物”一样重要的资产可以被经营,并通过大数据能力获得超出预期的企业利润。
通过用户信息为业务创造价值的时代已经到来,但是企业是否真正意识到用户信息的重要性?企业通过购买流量提升销售额的同时,却忽略了到店未转化客户的信息。企业应以此审视自己的业务流程,丧失掉多少获得用户信息的机会。
以某连锁零售品牌为例,遇到发展瓶颈,沉睡会员率高,会员复购率低。店铺经营转为用户经营,半年内实现流失客户挽回4%,睡眠客户激活6%,活跃客户增加10%。
未来营销组织发生方向:用户企划组、互动营销组、内容编辑组、大数据技术组。
用户企划组:站在消费者的角度研究消费者,研究群体需要的产品、用什么内容与群体沟通、群体的购买环境、能够提供的增值服务,获得分人群的预算。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13