
大数据分析在疾病与健康研究方面的应用
大数据分析技术将在以上方面发挥着特殊的作用。
一、疾病与健康研究
在疾病与健康研究方面,我们可将其分为三个子方面:健康研究、亚健康研究和疾病研究。
1、健康研究
中国是地域辽阔的多民族国家,不同地区不同种群的人的基因和健康指标有所不同,同一地区同一种群的人在不同的性别和年龄上健康标准也有差异。深入研究和分析上述人群的健康规律,对卫生保健、健康促进、疾病预防和治疗有着重大的指导意义。例如:
1.1 对体检数据分析和挖掘,得出不同地区、不同人群的健康差异,以确定精确的不同人群的健康标准,针对不同人群制定适宜的防病,治病方法以及预后标准,并量身打造个性化,地区化的健康评估模型。
1.2 在制定不同地区不同人群的参考值时,可进一步分析健康指标在不同性别、年龄和季节的差别,以及权重比,从而完善适合于国人全面的系统化的更科学的健康参考值。
1.3 人体存在的内在平衡,使得各个可观察数据间有其特有的规律,基于经验只能发现简单的规律如钙、磷常数等,使应用数据挖掘等大数据分析技术可以主动发现复杂的系统性的人体医学规律,大幅提升防病,治病以及预后推测的技术水平,并且也对亚健康有个更科学的判断依据,以及了解健康到亚健康的逐渐失衡的过程。
1.4 对孕妇在孕产期、产后及新生儿的健康数据进行深入分析,研究孕产妇和新生儿的健康规律,开发对孕产妇和新生儿的健康评价和因素的评估模型,给出更科学的孕产妇和新生儿保健的指导。
1.5 对儿童成长的体检数据分析和挖掘,研究儿童的健康规律,开发对儿童成长的评价和因素的评估模型,分别适应中国辽阔的地域和众多的人群,给出更科学的儿童成长发育指导。
1.6 对老年人的健康数据分析和研究,研究老年人的健康特点,开发对老年人健康的评价和因素的评估模型,给出更科学的老年人养生的指导。
1.7 对健康人的精神和心理数据进行深入分析,制定健康人的精神和心理参考标准,开发对健康精神和心理的评价和影响因素的评估模型,给出更科学的精神和心理卫生方面的保健指导。
2、亚健康研究
世界卫生组织将机体无器质性病变,但是有一些功能改变的状态称为“第三状态”,也称为“亚健康状态”,主要包括:功能性改变,而不是器质性病变;体征改变,但现有医学技术不能发现病理改变;生命质量差,长期处于低健康水平;慢性疾病伴随的病变部位之外的不健康体征。
对亚健康进行深入分析与研究对保持健康状态,预防和纠正亚健康状态以及对疾病的预防和治疗都有十分重要的意义。例如:
2.1 研究亚健康与疾病间的相互关系。研究各种可观察指标(体检数据)在亚健康中的权重,以及在不同地区、人群中的分布。应用时间序列,线性/非线性回归研究亚健康观察指标之间的关联性。通过亚健康体检数据挖掘,分析导致疾病的影响因素,建立评估模型来预测危险度,并进一步建立疾病的预测模型。
2.2 研究亚健康与健康间的相互关系。通过对体检人群的地区、职业、年龄等因素的分析,研究最新的健康和亚健康的人群分布。不同的人群地区环境不同,生活习惯不同,加入亚健康医学指标以外的相关外部数据(如职业、饮食、习惯、性格、爱好等)后,可发现综合因素对亚健康的影响,以及这些因素的各自权重,及相关关系,从而探究出亚健康的原因,对预防和治疗亚健康起着指导作用。
2.3 研究亚健康治疗和预后的研究。通过对亚健康治疗和预后的数据分析,评价治疗效果,评估最佳治疗方案,进一步开展对专科亚健康治疗和预后的研究,同时研究其与疾病的关系。
2.4 对精神和心理亚健康的研究。如对常见的精神亚健康状态:如神经衰弱、抑郁、焦虑和强迫等症状,进行数据归纳整理、分析挖掘,从而导出精神和心理亚健康的新知识发现,探究出精神疾病的原因,对预防和治疗精神疾病起着指导作用。
2.5 将住院和社区健康管理数据相结合,进行因素权重分析和多因素的特性抽取,最后形成模型指导治疗。最理想的情况是个体化评估模型,为每个病人建立专用预测模型。
3、疾病研究
中国面临的严重危害人民健康的疾病包括:
传染性疾病,如结核病、艾滋病、SARS、禽流感、甲型H1N1流感等;
慢性非传染性疾病,如恶性肿瘤、脑血管病、心脏病、糖尿病等;
精神和心理疾病;
小儿出生缺陷。
对患有各种疾病的病人的医学数据及相关数据的研究分析,对各种疾病的预防和治疗都有十分重要的价值。例如:
3.1 对传染性疾病,如结核病、艾滋病、SARS、禽流感、甲型H1N1流感等疾病的研究。应用数据挖掘技术对传染性疾病的数据进行分析,找出传染性疾病的发病规律,揭示传染性疾病的病因,进一步摸索出传染性疾病的变异规律,建立传染性疾病的预测模型。
3.2 对慢性非传染性疾病,如恶性肿瘤、脑血管病、心脏病、糖尿病等疾病的研究。应用数据仓库技术和数据挖掘技术对慢性常见病的数据进行分析,找出慢性常见病的发病规律,探索慢性常见病的病因,进一步摸索出慢性常见病的并发症规律,科学评估各种治疗方案的疗效,建立慢性常见病的预测模型。
3.3 对精神和心理疾病的研究。应用数据仓库技术、数据挖掘技术和数理统计技术对精神和心理疾病的数据进行分析,从广泛的多变量集中找出影响精神和心理疾病的主要因素,在遗传学、后天影响和病理学等多方面探索精神和心理疾病的病因,科学评估各种治疗方案的疗效,建立精神和心理疾病的预测模型。
3.4 对小儿出生缺陷的研究。应用大数据分析技术对儿童出生缺陷的数据进行分析,从广泛的大变量集中找出影响儿童出生缺陷的主要因素,在环境、遗传学、病理学等多方面探索儿童出生缺陷的病因,建立儿童出生缺陷的预测模型。
3.5 针对门诊和住院病人数据在线分析统计学差异,寻找阳性案例,为研究提供素材,并为科研的预实验提供思路和准备。对住院数据进行多维度分析和挖掘,横向达到单病种的水平,纵向包括所有可观测数据,所收集来的知识有很大可能会启发医学专家有新发现。
3.6不同 治疗手段和治疗效果的在线分析。结合收集来的大量资料全面分析,尽量提前全面的了解治疗的临床效果。
3.7 药品治疗效果在线分析,治疗效果、副作用、对其他疾病的效果评估。结合收集来的大量资料全面分析,尽量提前全面的了解新药和老药。目前的药品不良反应主要靠医生的通报,对医生的职业素养和敏感有很大的依赖,而使用数据挖掘及数据库中的知识发现,可以极大限度地改进这项工作。
二、环境与健康研究
环境因素对健康造成的损害较其他健康损害复杂,是微量、慢性、长期和不可逆转的。环境健康影响与公众利益息息相关,环境健康损害如得不到妥善处理还将转化为社会、经济问题。环境与公共健康研究以人类生态系统可持续发展研究为基础,关怀人类现在和未来的健康与安全,从环境研究途径关注社会、经济活动对人类生理和心理的健康影响,探索环境变迁对人民健康造成危害的预防和治理措施。
应用大数据分析技术对环境健康的研究,主要包括发现案例、发病机理和临床治疗研究,预防和治理各类环境流行病在污染源以及污染途径控制的研究等。例如:
1. 应用大数据分析技术研究环境因素对健康的影响,实行 一体化的环境和健康监测,并在全国实现数据共享。
2. 应用大数据分析技术研究环境污染对儿童的影响,以解决环境对儿童所造成的不健康和疾病迅速增长的问题,从而给予儿童特殊注意的环境和健康指导。
3. 应用大数据分析技术开展职业病和职业多发病的预防预测。对于各种职业的发病分布和严重程度,以及对职业病的深入分析。不仅包括传统意义的职业病,也包括不同职业的不同的疾病分布和在病因中的权重。另外,还可以分析不同职业的暴露特点进而对病因进行研究。
4. 应用大数据分析技术开展对空气污染显著提高城市人群呼吸道和过敏性疾病的发生 率的研究。
5. 应用大数据分析技术开展噪声污染损害儿童的听力和干扰他们的学习能力的研究。
6. 应用大数据分析技术开展快餐业的发展使肥胖病发病率不断增长的研究,尤其是不合理的营养对儿童健康的影响。
7. 应用大数据分析技术开展对转基因生物技术的应用对自然界生物和人类基因的潜在影响的研究。
三、医药生物技术与健康
生物技术涵盖生命科学的所有领域,医药生物技术是生物技术的重要组成部分。当今人类面临的人口、食物、健康、环境和资源问题,无不与之紧密相关。医药生物技术最鲜明的特点是大量新思想、新技术、新材料、新方法和新产品引入医学研究和医疗保健之中,如全新的医学成像技术、基因工程技术、微电子技术、干细胞工程技术、组织工程技术、纳米技术、生物芯片技术、克隆技术、酶工程技术、细胞工程技术、发酵工程技术、蛋白质工程技术、生物医学工程技术、基因组与蛋白质组技术、生物信息技术和中医药技术等及其产品,将大大提高疾病预防、诊断、治疗和药物设计研制水平,以及对突发事件(如传染病和生物恐怖等)的检测、预防与治疗水平。
以大数据分析技术为核心的生物信息技术在由众多新技术构成的医药生物技术中发挥有独特的作用。例如:
1. 利用生物信息技术进行生物信息的存储与获取。
2. 利用生物信息技术开展基因的序列对比、测序和拼接。
3. 利用生物信息技术进开展基因预测。
4. 利用生物信息技术进行生物进化与系统发育分析。
5. 利用生物信息技术进行蛋白质结构预测和RAN结构预测。
6. 利用生物信息技术进行分子设计和药物设计。
7. 利用生物信息技术进行肿瘤分类及遗传学分析。
8. 利用生物信息技术开展在生物分子层面对精神病的研究及遗传学分析。
9. 利用生物信息技术开展在生物分子层面对如H1N1等传染病的研究。
四、卫生宏观决策支持
卫生宏观决策支持系统是以数据仓库为数据中心、以数据挖掘为技术核心、以商务智能为展现工具的综合卫生信息平台。它可以建立在各级别卫生系统上,如医院、地区卫生系统、全国卫生系统,为各级卫生部门提供智能决策系统,深入了解卫生系统的历史和现在,把握卫生系统业务发展的未来,评估卫生系统内部各部门的业务效绩,帮助各级决策者提供最佳实施方案,给决策者一双慧眼,清晰认知系统内各方面变化趋势和业务得失,使对系统各部门的评价、考核、奖励更加科学、公正、客观,使系统内各级关系更加和谐,积极发挥各部门的潜能,提高系统的整体业务水平和经济效益。使用商务智能辅助决策,可以提供各种有价值的信息,各种事件的关联,以及不同于微观的角度分析各种卫生信息,如预防接种基本数据,传染病报告等等。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19CDA 数据分析能力与 AI 的一体化发展关系:重塑数据驱动未来 在数字化浪潮奔涌的当下,数据已然成为企业乃至整个社会发展进 ...
2025-06-19CDA 干货分享:统计学的应用 在数据驱动业务发展的时代浪潮中,统计学作为数据分析的核心基石,发挥着无可替代的关键作用。 ...
2025-06-18CDA 精益业务数据分析:解锁企业增长新密码 在数字化浪潮席卷全球的当下,数据已然成为企业最具价值的资产之一。如何精准地 ...
2025-06-18CDA 培训:开启数据分析师职业大门的钥匙 在大数据时代,数据分析师已成为各行业竞相争夺的关键人才。CDA(Certified Data ...
2025-06-18CDA 人才招聘市场分析:机遇与挑战并存 在数字化浪潮席卷各行业的当下,数据分析能力成为企业发展的核心竞争力之一,持有 C ...
2025-06-17CDA金融大数据案例分析:驱动行业变革的实践与启示 在金融行业加速数字化转型的当下,大数据技术已成为金融机构提升 ...
2025-06-17CDA干货:SPSS交叉列联表分析规范与应用指南 一、交叉列联表的基本概念 交叉列联表(Cross-tabulation)是一种用于展示两个或多 ...
2025-06-17TMT行业内审内控咨询顾问 1-2万 上班地址:朝阳门北大街8号富华大厦A座9层 岗位描述 1、为客户提供高质量的 ...
2025-06-16一文读懂 CDA 数据分析师证书考试全攻略 在数据行业蓬勃发展的今天,CDA 数据分析师证书成为众多从业者和求职者提升竞争力的重要 ...
2025-06-16