
十个有效的大数据分析途径让你更了解用户
我们正处于福雷斯特研究公司所描述的“用户时代”,这个时代中驱动业务决策的不再是公司,而是用户。基于这个原因,深度理解用户的重要性已经远胜以往,因此许多机构开始使用大数据技术来挖掘用户信息。
在这个时代,企图收获成功(甚至是求生存)的在线业务必须切实的理解顾客的体验和行为,因此海量数据的收集及挖掘能力成了这些机构的必备手段。当下,有许多机构的分析仍处于数据的收集上,组织能力的缺乏和技术的限制让这些收集来的数据失去了应有的价值。而在用户体验上也缺乏按部就班的计划,从而丧失了获取关键见解的途径。因此,这样的数据分析有很大的误导、不完整及不确定性。
收集和分析正确的数据、切实的理解用户体验及用户行为已成为当务之急,下面将分享10个大数据的使用方法,可以帮助机构从用户交互中获得见解、提高用户忠诚度并从根本上取得竞争优势:
1.将网络传输中的数据看做“金矿”并进行挖掘。你的网络中包含了大量其它公司无法从中获益的数据,收割这些数据中的价值是你真正理解用户体验的第一步。
2.不要总是用假设去了解你的用户,并且知道他们需要什么。拥抱用户,并且切实的了解用户行为,要比去假设要好的多。保持客观,从实际数据中获得见解。
3.尽可能的收集数据,从而减少盲点。盲点可能导致丢失关键信息,从而得到一个歪曲的用户体验观。确认你收集了一切可以影响到用户体验和行为分析的数据。
4.对比数据的体积,我们该更看重数量。收集好数据之后,专注于重要的数据来做分析方案。
5.迅速。用户需求优先级总是在变化的,技术需要迅速的做出分析并做调整。这样才能保证你分析出的不是过时结果,对于随时都在改变的需求,你需要迅速的收集数据并做出响应的处理。
6.实时的业务运作。这就需求对数据的实时分析并获取见解,从而在情况发生后可以实时的做出调整,从而保证最佳的用户体验及经营结果。
7.分析不应该给产品系统带来风险,也就是分析永远都不应该给用户体验带来负面的影响。所以尽可能多的捕捉数据,避免盲点才能让分析出的见解不会对业务有负效应。
8.利用好你数据的每一个字节,聚合数据可能会暗藏关键见解。这些信息片段可能会反应最有价值的见解,可以帮助持续的提升用户体验及经营效果。
9.着眼大局。捕捉与你站点或者网络应用程序交互的所有数据,不管是来自智能手机、平板或者是电脑。丰富数据,将不同储存形式之间的数据关联起来,确信这些点都被连接了起来。在处理中关联的越早,获得的见解就越完整、精准、及时和有效。
10.和平台无关,确保你的大数据分析能力不会受到设备的类型限制(笔记本、台式机、智能手机、平板等)。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29