京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据科学如何为电商企业增加利润
电商领域的数据科学
世界被来自四面八方的数据紧紧包围。每次购物点击鼠标,你的信息足迹(数据)都被收集并保存起来。商家会利用这些数据吸引你在未来购买更多商品。如果你想买一台新手机,手机类网站/app知道你查看过哪些商品,谷歌知道你搜索过哪些商品,GSMArena(热门的智能手机评论网站)知道你阅读了哪些评论。你也碰巧把这些评论分享到了Twitter,Facebook,Instagram,Pinterest。而这些分享记录可以帮电商企业了解消费者想要什么,何时有需求。这个过程中包括对数据进行收集、储存、排序归类、分析,以得出有价值的结论。这些工作是数据科学必不可少的部分,由被称作“数据科学家”的专业人士完成。
“过去不会重复自身,未来却会与它呼应。”- 马克·吐温
未来的事件都在特定环境与条件下发生,但也不乏模式可循。“大数据革命”为数据存储、云计算、以及能帮企业进行模式识别的数据科学,提供了技术上的创新。如今,数据科学可以预测任何事情,无论是流感爆发还是犯罪死亡率。
设想一个电子产品零售商的处境。因为产品优质、物流及时,这家店一向生意兴隆。然而消费趋势在改变,竞争也愈发激烈,市场上出现了对生态化产品的需求。他们的顾客因此慢慢流向竞争对手。用传统方法调查市场,这个缓慢流失可能被忽略。但这些微小的变化可以被数据科学家察觉。他们编写算法,不断监测过往销售表现,并与来自媒体和社交网站的外部数据相对照,探讨这些趋势,试图发现它们与购买倾向的关联。数据科学家提供新的方法,让零售商领悟如何维持住核心消费群,而不是仅仅试图获取新的客户。
根据EMC的统计报告,到2020年底全球数据总量预计会超过44ZB,几乎相当于每人5200GB。数据的生产量每年都在翻番。“数据就是黄金!”与此同时电商行业的竞争也变得更加迅猛更加激烈。用户行为一转眼就会发生变化,为满足顾客需求,每个企业都想更胜一筹。常识、直觉和第六感对此有所帮助,但不足以做为预测的依据。数据科学算法却能帮助企业有效理解产品、服务、过程、顾客。
数据科学不是互联网公司专属
在电子商务领域,数据科学通过捕捉和整合消费者的线上行为、生命事件、购买驱动力、互动方式和其他更多信息,使企业更了解消费者。
电商领域的一些数据趋势:
数据科学在电商领域的应用
1) 为消费者推荐产品
“未来的趋势是个性化。而你会像消费者了解自身一样了解他们。”
Tom Ebling, Demandware总裁兼CEO
基于消费者行为作出的促销和推荐非常有效。如今的消费者非常依赖推荐系统,不论是产品购买、新品消息、外出就餐或服务选择。多数电商网站,像 Walmart、Amazon、 eBay、Target都拥有数据科学团队,在推荐系统背后,思考类型、权重、特性和许多其他因素。数据科学建立的推荐系统有两个主要的目的:
数据科学算法学习产品相关的多种属性、关联,学习消费者的喜好以便预测他们的需求。这些算法为消费者更换展示页面,或app或网站上产品排列顺序,使得消费体验个性化。
Puneet Gupta,Brillio(一家立足于美国的科技咨询和软件开发商)的首席科技官说:“有了预测分析和机器学习应用,电商企业现在可以对消费者的行为模式有清晰的了解,贯穿全站各种商品的购买历史和销售表现。”
这一类应用,最好的例子是亚马逊使用预测建模的推荐系统。亚马逊的推荐系统发掘,并用数据表示从历史数据中发现的关系,以此来进行分类和预测未来事件。
2) 获取关于消费者留存、增值销售和组合销售的洞察
消费习惯不断变化,忠诚度不断消减,预期居高不下。获取消费者洞察对于电商企业的存活已经至关重要。
每个电商网站/app都要销售商品,但他们需要的答案应该针对于:
谁在购买他们的商品?
这些人住在哪里?
他们对什么样的商品感兴趣?
如何更好地服务他们?
什么促使他们购买?
上面这些问题都能由专注于消费者洞察的数据分析师提供答案。而数据科学利用更先进的分析方式,例如分类器、区隔、非监督聚类、预测模型、主题建模和关键词提取的自然语言处理,创造更多价值。
Blue Yonder,一家德国软件企业,使用数据科学工具与技术协助Otto(欧洲线上时尚巨头)。当消费者走进实体店,或登录零售店WIFI,或连接上网站/app,自动学习就已经开始。这些消费者会收到基于地点、天气和大量其他因素决定的推送信息。
3) 优化产品策略
电商企业不得不面对种种问题,比如:
数据科学算法帮助电商企业决定和优化产品组合。每个电商企业都有一个产品团队研究这个设计过程。而此过程中数据科学算法可帮助企业预测:
数据科学家利用更先进规范的预测分析帮助电商企业。而数据分析师仅仅对企业获取了多少利润,哪种商品没有价值等问题进行回溯分析。
4) 预测供应链模型
销售商品的电商企业,需要在恰当的时间恰当的位置,拥有数量刚好的商品。对于电商企业乃至所有零售企业,某些产品的需求窗口非常短暂(定制的“圣诞快乐2014”商品没法销售到2015年元旦)。如果错过了这个窗口,最终就会在仓库里堆积大量库存。数据科学算法运用详细的分析,开发出预测模型,帮助电商企业优化供应、减低风险、为决策提供信息。
5)个性化营销策略
数据科学在个性化营销项目中扮演重要角色。电商企业总想寻找新的方法,来鼓励现有的消费者购买更多,或吸引更多新消费者。数据科学家通过重定向优化、宣传渠道组合优化、关键词购买优化等等方式对此做出贡献。通过使用种种策略设计算法,数据科学家能帮助电商企业一飞冲天,获取有价值的回报。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27