
数据分析过程中容易犯的几个错误
数据分析的作用不必多说,在网站运营、网络推广等方面都需要数据分析作为支撑,所谓兵马未动,数据先行,数据分析是我们做网络推广必须要掌握的技能。通过观察学员们在做数据分析的过程中以及最后的数据情况,发现大家最容易犯的几个错误,在此也帮大家总结一下。
1、没有明确分析数据的目的
咱们要分析一个数据,首先要明确自己的目的,为什么要收集和分析这样一份数据,也是只有明确了目的之后,才能够把握好接下来应该收集哪些数据,应该怎么收集数据,应该分析哪些数据等。
2、没有合理安排时间
数据分析也要合理安排时间,一般我们有几个步骤,收集数据>>整理数据>>分析数据>>美化表格,在做这些之前,我们要预估一下每一个步骤需要花多少时间,哪一步比较重要,需要花更多的时间等,这些都要在开始收集数据前就计划好,然后在操作的过程中在规定的时间里完成每一个步骤。
3、重收集轻分析
培训里有不少同学就犯了这样的一个错误,做任务的时间为3个星期,却用了两个多星期来收集数据,最后基本没有时间去分析,紧赶慢赶最后交上来一份没有怎么分析的数据。数据分析重点应该在于分析,应该以最快的速度收集完数据,才有更多的时间整理和分析,最后经过分析的数据才是最有价值的。
4、收集数据太多,导致无法整理及分析
在我们开始收集数据的时候,容易犯的一个毛病就是看到什么内容比较符合的就都收集下来,这样的情况是数据越来越多,表格里文档里的内容越来越多,到最后一看,自己都晕了,该怎么整理和分析啊!其实我们在收集数据的时候也要有一个标准,什么样的数据是我们需要的,什么数据是不符合条件的,作一个初步的判断,这样就可以减少后面整理的更多工作量了。
5、不懂得分析哪些数据
这是比较普遍的问题,收集了数据后不知道要分析哪些项目,哪些数据点才能体现出分析的目的。其实这也是前面说的目的不明确造成的,不清楚为什么要收集这份数据,这份数据是用来做什么用的,那就不会有一个评判标准,就没有办法找到数据的要点。比如我们要分析排名前十的在线旅游网站,那就要知道什么样的旅游网站才是最好的,最好的在线旅游网站应该具备什么条件,把这些条件列出来,然后根据条件去收集网站的数据,最后满足所有条件的网站就是最好的旅游网站之一了。
6、表格不美观,不清晰
咱们做数据分析一般使用的是excel表格记录,一份美观清晰的表格不仅使我们可以清楚的看到这份数据的重点,方便查到所想要的数据,我们在收集数据的过程中,也可以提高我们收集和分析数据的效率。Excel还不熟练的同学,建议多找些教程,然后多练习,最后得到一份漂亮的数据,自己看着也舒服。
7、不能坚持
数据收集和分析是一件非常闷的工作,不管是收集还是分析,海量的数据里,经常会让人摸不着头绪,数据越多,整理分析起来越麻烦,也越容易让人烦燥,坚持不了的就会半途而废。所以,做好以上6点,也就是明确目标、合理安排时间、把握重点、懂得取舍数据、制作精美表格,都可以让你更轻松的完成数据的收集和分析。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13