京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据如何助力电网企业商业创新
在“互联网+”“工业4.0”“共享经济”等不同热词的引领下,现今的中国经济有了一系列新的阐释。虽然这些主张不尽相同,但核心思想都与大数据有着密切的关系。大数据对打通业务壁垒、发现商业价值具有重要支撑作用,促进了互联网、金融等领域企业的市场开拓、产品研发、客户服务。今年,国务院相继印发《运用大数据加强对市场主体服务和监管的若干意见》《促进大数据发展行动纲要》,这表明大数据已上升为国家战略,并具备推动传统产业升级转型的重要作用。由大数据带来的商业模式创新,也给企业带来了新的发展契机,电网企业亦是如此。
但电网企业大数据在应用方面有两种做法不可取。一是将大数据作为新概念,将原有商业模式、管理模式进行包装,最终结果往往过于空洞且不尽如人意;二是将大数据作为新的IT技术,在没有明确战略意义与发展路径的前提下,仅依靠信息化应用的方式进行实施推广,最终结果往往成为信息系统的立项依据且发挥作用有限。电网企业如何应用大数据,如何使之成为推动管理创新、商业模式创新与产业革命的内在动力,成为大数据应用中的关键问题。要实现电网大数据的商业模式创新,建立大数据的系统思维至关重要,表现为应用格局、应用主线与应用基础三个方面。
首先,要建立能源大数据的商业生态系统格局。这意味着电网企业开展大数据应用不能局限于本企业掌握的电力数据及相关客户数据、设备数据,而应从促进能源生产、供应、存储、消费的产业格局下发挥电网企业的数据资源优势。未来电网企业要将电力、燃气等能源领域数据及人口、地理、气象等其他领域数据进行综合采集、处理、分析与应用,发挥能源大数据“黏合剂”与“助推剂”作用,在产业层面探索建立具有“平台”特征的完整能源生态系统。“黏合剂”主要是指对其他企业的吸引力以及形成平台模式后的协同效应,“助推剂”主要是指对能源产业生产、消费革命以及企业发展转型的推动作用。对电网企业来说,在以能源大数据为基础的生态系统中占据主导地位具有十分重要的意义。一方面,电网企业的价值将不再局限于传输电力流的物理盈利模式,而是能够通过信息、知识、数据的汇集与分享创造价值,增强核心竞争力;另一方面,电网企业通过吸引社会资本及不同主体的参与,共建互利合作的商业环境,可提升企业的科技创新与可持续发展能力。
其次,要以电力能源价值链延伸为主线,转变应用模式。电网面向内部大数据分析、应用已具备成熟基础,在电力负荷预测、电网设备状态监测、配网故障抢修精益化管理等方面积累了大量经验。未来,电网企业对数据资产的应用重点将体现内部数据与外部数据的交叉应用,这也将进一步拓展企业商业空间,实现业务价值链向电网外部延伸。一方面,由发现电网运行规律转向提升用户价值。在电力供给、需求、客户负荷特征等数据分析基础上,注重对用户的数据挖掘与价值发现。在需求侧管理、家庭能源管理、节能服务、智能家居、合同能源管理、95598客户服务等业务中缩短与用户的距离,挖掘用户行为的特点,加强对用户需求与体验的引导与满足,不仅使公司具备应对电力市场化改革与数据化竞争的技术优势,还会为社会促进节能减排、实现“两个替代”等作出贡献。另一方面,由支撑内部管理转向提供外部服务,公司不仅能够通过数据分析提升运营管理效率,还可将数据资产作为一项产品或服务进行变现。一是借鉴大数据交易所的运营模式,将底层数据清洗、脱敏、建模,转化为可视化后的数据结果,使数据资产能够在隐私得到保护的前提下进行交易;二是对相关行业提供数据咨询服务,如用电行业能耗数据、居民用电特征数据、电力数据APP软件等;三是提供征信数据产品,向P2P、商业银行等终端客户广泛提供信用报告、信用评分及反欺诈、商业决策等产品。
最后,要加快建设统一的基础数据管理平台,形成平等、共享的创新创业氛围。以往电网企业在数据利用方面以业务系统设计的功能为主,数据可二次利用程度较低,不利于不同部门、员工开展商业模式创新。产生这种情况的主要原因是各信息系统的数据编码、元数据规则不同,且一些信息系统在初期开发就将功能固化难以二次修改完善。未来,围绕基础数据的融合、共享是开展商业模式创新的重要前提与基础。一方面,建设统一的基础数据管理平台,以全面、准确、实时、高效为原则,整合现有信息系统,对数据资产中涉及敏感信息的经营管理与客户数据可采用清洗、脱敏、建模等技术手段,保证处理后的数据能够被公司大多数部门与单位共享;另一方面,加快形成数据资产创新创业机制,鼓励各单位建立以产品需求、应用需求为导向的数据资产开发小组,提高数据资产的利用效率与质量。
电网企业要顺应大数据发展趋势,立足企业,服务社会,深化大数据商业模式创新,将能源大数据作为实现企业发展战略的催化剂,发挥对“全球能源互联网”建设、“两个替代”方面的助推作用,将数据资产作为推动传统产业转型升级、建设创新型社会的驱动因素,全面提升服务客户、服务社会的水平。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29