
有关大数据 你不一定知道的几个冷知识
大数据的隐秘魅力就在于,他比你都了解你。你以为你每次按下手机按键的动作都是一样的吗?哈哈图样图森破。
来自今日头条的技术副总裁杨震原告诉童鞋们,他们正在测试的“黑科技”,恰恰能从你点击按键的时间和手指面积,推测出你当时的情绪。你的漫不经心、愤怒或者感动,都能够成为后台为你推送何种消息的依据。未来,如下场景可期:
如果你正处在被女神甩掉的悲伤中,也许客户端会为你推送——搞基的一百种好处。如果你正处在领到本月工资飘飘欲仙的快乐中,也许客户端会为你推送——在北京月两万何时能买一个厕所?
那么这种“恰到好处“的情绪拿捏和大数据有什么关系呢?实际上对你情绪的推测是建立在对你多次正常点击的记录之上的。这种行为数据甚至在你还未意识到的时候,就“出卖”了你的情绪。
今日头条技术副总裁杨震原在分析一个按钮的平均触摸时间
你的“姿势”,才是真的大数据
银行每天的交易账目流水的统计数据,并不是大数据,而每个用户在拿号之后等待了多久才排到,有多少用户骂娘,有多少用户过于焦急愤而离去,这些真正的行为才是大数据。
杨震原又举了今日头条在应用中的另一个例子。
实际上,你在一篇文章的什么位置停留多久,然后划动了多远,在新的位置停留了多久,是否看了评论,看了几条评论,都可以按顺序被记录下来。接下来就是通过算法评估读者的兴趣所在。
CSDN创始人蒋涛也特别提到,美国电商平台Wish正是用大数据的方法,根据每个人的数据不同,“看人下菜碟”地推荐你可能喜欢的货品,三年时间已经发展成北美最大的电商之一。
所以,一个悲伤的消息是:未来如果你要隐藏自己的身份,不仅仅要变装易容伪造指纹,甚至连点击手机,查看文章的习惯都要改变了。
大数据就是:一个都不能少
如果要想知道有多大比例的人喜欢GV,那么只需要做好抽样调查就可以了,没有必要对所有人进行调查。但是如果你想要推销宅腐的周边智能硬件产品,则需要逐个排查每个人“独特”的兴趣爱好。
所有数据一个都不能少,这就是所谓的“全量加工”,这些数据的制造者正是各大厂商利润的源泉。
360商业产品首席架构师刘鹏是一名网红,他在很多场合都强调:全量加工才是大数据。他说,涉及到个性化推荐、计算广告、个人征信这些场景,大规模的计算就是无法避免的。
从技术角度来说,之所以大数据可以做到这么精准,也主要得益于技术的进步。感知设备被丰富地用在五花八门的硬件上,使得以前无法记录的数据,现在都可以被记录了。
大数据不应该给人用
大数据应该交给机器做决策,而不是交给人做决策。
这种洋溢着对人类深深不信任感的论断同样来自于刘鹏。在他眼中,大数据是为机器提供的食粮。而能够驾驭大数据的人类基本只有两种:数据科学家和统计工作者。
IT企业中养一群科学家的可能性为零。而人类的判断往往基于宏观、战略,不可能有精力做到“因事而异”。相比之下机器的判断比人类更加细致。比如为每个用户比如画像、贴标签。所以,要想把大数据利用透彻,愚蠢的人类还是暂时靠边站吧。
“有点错误”的大数据更好用
“数据”这两个字,天然给人一种完美而且精准的感觉。在这方面,大数据要挑战你的底线。作为数字广告领域的大牛,刘鹏强调,大数据可以存在半一致性这样模棱两可的属性。换句话说,允许数据错误和丢失。
纳尼?错误的数据也是好数据吗?没错。由于数据量巨大,而且分析半天往往没什么有用的收获(价值密度低),分析者往往需要选取一些特征数据做加工,而对于这些特征数据,也许还要简化之后再加工。所以最终大数据要达到的结果是难得糊涂,却一针见血。
所以,如果有人向喜爱人民网的你推荐草榴的时候,先不要发火,你可能只是大数据的一个错误罢了。
保险公司最喜欢和大数据在一起
如果你是一个鲁莽的人,最想知道这个情况的无疑是你的汽车保险公司,想必你的保费会居高不下;如果你是一个谨小慎微的人,最想知道的也是保险公司,因为它可以用打折的保费吸引你投保。
在你身上,甚至存在一个精确的“岀险率”数字。这个听上去很惊悚的数字恰恰是保险公司利润的来源。因为不掌握这样大数据的个人,是无法计算自己的岀险率的。保险公司恰恰利用这种信息不对称,给一个岀险率是万分之一的人开出了千分之一的保价,相当于赚了十倍的利润。
隐私问题要靠技术改进
数据比它看上去的样子更险恶,这是大数据业内人士的普遍共识。即使隐去了你的姓名电话等等敏感信息,只保留你和其他人联系的记录,熟悉你的人完全可以猜到你的身份。目前大数据的安全性,在他人的恶意之下,显得力不从心。
隐私问题,制度只能解决20分,剩下的80分要靠技术进步来解决。
刘鹏如是说。期待市场倒退到前大数据时代,似乎没有希望了。
如何精确统计出有多少人喜爱苍井空,有多少人喜欢武藤兰,但是又不泄露到底是谁喜欢苍老师,谁喜欢武老师,这是目前大数据的最前沿研究。
有关大数据的政策再严格,没有一套可靠的保密技术,数据的安全都是无从谈起的。隐私算法、数据脱敏、数据隔离。都是研究的方向。在此之前,各位的大数据还都在相对危险的状态。这也是为什么目前法律没有禁止数据买卖,而各大巨头却不敢将数据出售的原因。 当然,大数据库市场价目前比较低也是一个重要的原因。
SDCC,中国软件开发者大会。由全球最大中文IT社区CSDN于2007年创办,每年一届。主题是下一代软件开发技术趋势与对各行业的深刻影响,以谈干货实料著称。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16