
家品行业更需仰赖大数据分析
在互联网时代,新兴行业的发展选择线上还是线下渠道,这是一个最为常见的话题。尤其如今大数据盛行,行业前进方向的选择就一定会成为发展的重要节点。家品行业该何去何从?如何把握好市场方向?这些就是急需考虑的问题。
尽管线下家品卖场不断传出品牌关店的消息,但瑕不掩瑜,依然不乏有年增速超过300%的平台存在,做得好的线下店几乎也是以年增量翻番的速度前进,市场大环境的看好让业内人士对行业信心十足。各大家品平台齐齐将目光锁定在25岁—40岁的人群,他们正是当下市场消费的中流砥柱,家品消费的意识正在萌芽。中国庞大的消费人口基数,为家品行业的全面爆发做好准备。
方向 1
打通线上线下渠道,便利与体验两手都要抓
家品虽然隶属于家居行业,但与传统的家具属性不同,产品体量小、更新换代快的特点,更能够适应互联网的水土。以优集品网为例,该平台发展三四年来销量一直很稳定,年增速达到300%—500%。不过,线下做得好的平台也不遑多让。HI百货创始人谢萌透露,HI百货正佳店开业至今,销售额始终保持倍数的增长,目前已经在北京、武汉开拓新店,还有更多国内城市主动邀请HI百货进驻。刚成立一周年的旋木家居,也以其高端小众的定位,牢牢抓住高端消费人群,不仅销售稳步上升,也吸引了许多异业的合作伙伴。
对于线上线下渠道之辩,多数企业认为应该两手并抓。谢萌表示,HI百货微店已经进入调试阶段。线上不仅可以节约交易成本,更重要的是可以便利消费者,为消费者提供具备服务增值的情感模式。同时,互联网更方便数据收集,对消费习惯、消费偏好进行研究,助品牌提供更全面的服务。就连经营国际顶级家品品牌的旋木家居也有触网的打算,创始人倪娜表示,中国市场庞大,网购具有一定的优势。并且国内消费者已经形成网购的消费习惯,走电商渠道也是为了迎合消费者的需求,提供更多的增至服务。
优集品网创始人鲁宁馨表示,互联网家品肯定是大势所趋,不过,家品在一定程度上仍然需要体验。对于好的产品来说,直观的体验就能最直接地抓住消费者的心,因此,线上渠道也有存在的必要性。谢萌认为,线下店不仅仅是卖商品,更重要在于能够向消费者展示一种价值观和文化取向,分享共同的生活方式,这也是HI百货能够成为广州文化生活地标的一个原因。
方向 2
有必要做好市场教育,让更多消费者认识家品
虽然有越来越多的人群开始消费家品,尤其在都市白领、年轻家庭、海归人士等人群中呈现出较高的增长性。不过,国内消费者对于家品的认识远远不够。朋友圈的流行,可能让消费者开始意识到吃饭也要吃得美美的,因此会选购趣味而有设计感的餐具,然而,对于餐具背后更多的设计故事、文化内涵不甚了解。
家品不仅能够为生活增添乐趣、带来方便,一些顶级产品更值得收藏传世。再者,家品不仅仅是生活用品,更能传达出一种生活方式和价值追求。只有在观念上达到了共鸣,消费者才能更好地认识、认可家品,从而促进行业的蓬勃发展。因此,做好市场教育、市场培养是许多企业致力投入的方向。
互联网平台从商品介绍、品牌宣传的角度,挖掘更多的新品“威水史”,让消费者对品牌有了初步认知并产生认可。而线下品牌则可以做得更加深入。例如HI百货自成立以来,经常会举办一些线下展览和活动,营造卖场整体的文化氛围。同时,还会为会员提供生活课堂,包括手绘陶瓷、花艺课堂、皮具制作、烘焙制作等,让更多消费者接触到新的生活方式。旋木家居也经常为VIP会员提供增值服务,例如红酒、咖啡、生活美容等方面的讲座,通过价值观上的一致认同,为消费者提供更多元的生活方式。
方向 3
基于大数据分析,抓准市场痛点
互联网大数据时代,为各行业的方向提供更加科学而明确的数据支持,减少企业独自探索需要绕的弯路,大大地加快了行业的发展速度。家品行业也不例外,在大数据时代,需要对消费人群进行深入分析。家品行业更需要数据分析,家品的消费涉及到生活习惯、生活观念,人体工学、审美情趣、使用偏好上的差异,就能够产生巨大的差别。因此,进口家品能不能根据中国实际生活场景进行改良和消化,将决定其未来的市场前景。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09