京公网安备 11010802034615号
经营许可证编号:京B2-20210330
分析产品数据时需要注意哪些坑
之前在国外的论坛中有看到关于数据分析的细分,英文单词是segmentation,Segmentation的原意是分割。怎么理解呢?试想想,当大量的数据摆在面前是无非直接去分析的,能够做的就是细分。明白这一点之后,我们来从Why 和 How 上来简单说说。
无论是谈业务,讲解好的商业模式,还是做产品,会伴随一个简单的问题:这个商业模式、业务的客户群、产品是哪些?(如:远近闻名的Uber的主要用户是哪些?)好的回答会给你说,我的业务主要是分B2C、C2C;再好一点的答案会给你说:“根据我对市场的研究,我主要做B2C的市场,我的客户主要会集中在群体A以及群体B,我的商业模式会对不同的群体有不同的运作方式”。如:Uber的主要市场是在一线城市,主要细分市场集中在中高端出租车(出行服务),主要客户细分为服务提供方:私家车车主;服务受众:针对需要更便捷的出行服务人群。这些都是数据反映出来的结果,越多的数据,能够得到越多的信息。
从受众的角度来看,把市场一层一层剥开:市场> 市场细分> 用户细分> 用户
从运营角度来说,在数据分析之前,先要了解市场细分,而做的细致,则是对每一个顾客有定制化营销。而对于任何一家公司来说,如何将这个认知的过程做好,则是这个生意/商业模式的关键。而“细分”(segmentation)很好地从一个相对可控的维度,给予我们决策者/执行者足够的”认知“去进行商业决策。这里需要强调的是,公司是用“细分”还是客户定制化营销,并不是对立的关系,完全是根据公司发展的进度和客户的需求来的。举个例子,还是拿我最为熟悉的知乎说事儿,知乎现在从战略上来,用客户细分解决那些“大V”问题,类似这段时间的版权改版 - 针对大V/内容贡献者这个segment的加强;类似知乎日报升级 - 针对普通用户/非用户segment的改进。
谈数据分析,必然要从统计学的角度扯扯。
从统计学的角度来说,这是分类问题。而从分析的角度来说,涉及两个方面:
定量分析
定性分析
在迫不及待跳到用什么各类高端模型(比如AARRR模型,我真不是故意的,这个确实是个例子)之前,先来确定我们的数据分析的目标 其实说白了是对用户做判断:
现有用户 -- 现有用户是?喜欢啥?怎样的消费习惯?所有用户里面,哪些最值钱?etc...
潜在用户-- 潜在客户在哪?他们的喜好?我们要通过什么渠道获取?获取成本是多少?etc...
这类问题,嘴上说起来是简单的,但是实际上,建立这样的用户需要很系统的定量分析和定性分析,根据你对用户的了解而提供对应的服务即是一种:产品的思维。这也就是为啥我觉得很多大型公司都会对部门进行细分:数据分析部,产品研发部,市场部。对指定新产品从整个发展线上去定位,然后再去做运营。
对于现有用户和潜在用户的了解,有如下方式:
了解你的商业模式:是零售类的重复性销售还是会员制度,还是其他(类似金融产品的销售云云)。
了解你的商业目的:
当前产品的定位产品
产品这个发展模式的定位
仅仅根据数据(财报)体现出来的通过不同的精准营销手段来提高短期收益
提高用户活跃度
了解你的用户基本行为
关于用户基本行为一点,是现在大数据分析的最为直接的目的。而实现这个这个往往会通过很多小的项目(也就是经常提到的跨部门协作的体现)来不断完善。我了解到的是根据RFM分析(Recency,Frequency,Monetary)来分析,来了解你的用户都是些什么人,有什么消费习惯,他们对营销活动的反应如何,反馈率是多少。根据大量的数据统计的结果,来制定你的商业计划。利用数据模型,比如k-means cluster,等等去分类你的已有客户,看看他们基于某一个指标来分类,因为我的商业目标是为高利润的客户提高更好的服务,降低这个客户群的流失率,增加交叉销售的成功率(cross-sell rate)。
为啥要扯这些呢?因为很多数据分析的坑,都是这些具体的数据细分开始就错了。
比如,从市场这个起点开始就错了,没有搞清楚这个数据是否能够对这个市场能有好的分析性和预测性。这是一个链条,从一开始的错,会一直错到最后。而数据分析的逻辑是很严密的,如果你没有意识到你的起点就是错的,那么错误的分析会让你走入“只求短利益”而忘记产品持续发展的重要性,这也是为什么很多做手游的公司,一再投入分析数据,运营,但是产品的效果总是不好。
再者,用户的流失率表面上可能是运营不到位而在营销手段上输给竞争对手而导致的。如果做一个关于“产品的各个功能满意度的调查”,会发现,大量的用户流失是因为你的产品没有持续发展的产品设计,而不是营销上给用户“恩惠”少了而流失,虽然营销的失败也能够导致用户的流失,但是不会有大量的流失的现象出现。
我们做数据分析是为了改善产品,从而给用户更好的产品体验,本质是要对用户的进行进行深度分析,然后结合现有产品的特点,去改进,这才是数据能说话的要义。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29