
手把手教你微信公众号数据分析
这是一篇公众号运营科普文
适用于公众号运营初级选手
欢迎误入的大神强插指点
闲话少叙,直接脱裤子进入正题:
公众号运营数据分析的地位
数据分析……
重要吗?
重要!
是最重要的吗?
不是最重要的!
没有数据分析就不能公众号了吗?
绝对能做,但是很可能做不好!
方向定位、内容运营、用户运营、活动运营、数据运营,有机结合起来才是微信公众号运营的完全体。
公众号运营数据分析的作用
如果把公众号运营比作“在黑暗中前行”
那数据分析则可以当成“探路的拐棍”
锁定300米远的目标要靠感觉
扫清3米内的障碍要靠拐棍
数据分析在微信运营中的作用主要有两个
1、验证,验证前面是路还是坑
2、启发,发现路上的金子
好吧,不要打这种稀奇古怪的比方了,咱说正经的。
公众号运营的过程一般是这样:
可以看出,有了数据分析,上面这个循环才能不断优化不断完善,这就是数据分析最重要的作用。
啥?数据分析最重要的作用是写报告给领导看?
stop!眼光长远一点,牛逼的结果才是领导真想要的,想要牛逼的结果就必须让上面的循环高速、高效地跑起来!
公众号运营数据分析的方法
0、满满的好奇的心
如果只是随便玩玩,或者应付公司的差事,那你看了本文前两部分知道数据分析大概的是啥,可以去吹牛逼就够了。
如果你有很强烈的欲望把自己公众号做牛逼,那就接着往下看,因为,欲望越强烈,对数据的好奇心才会越大。
而好奇心是最好的老师,从现象和数据中追溯背后的原因,发现关键的因素和节点,在这个过程中获得乐趣和成就感。
只有如此,才能把数据分析这个工具的作用体现出来。
1、基础数据有什么
首先,我们要了解,微信公众号的基础数据有什么:
基础数据在哪能看到?
公众号的数据后台已经做得比较完善,在后台左侧的菜单栏,“统计”那个模块所有基础数据都在这里。
基础数据有哪些?
2、带着问题看数据
如果你没有“带着问题看数据”思想,那么,你看到上面几组基础数据时,心里一定在想:这特么都啥玩意儿啊。
只有当你强烈地想解决某个问题的时候,你才能从这些数据里看出些门道。
比如
当你很想知道图文头部放一个引导点击“蓝字”关注的提示,是否有用时,你才回去看用户来源的数据对比。
你才会发现,原来80%的新关注用户都来源于其他(其中点“蓝字”又是主要的)。
你才会发现把引导点“蓝字”提示做的更诱人是有效的。
3、从数据中发现问题
发现了数据中的乐趣之后,就要时不时去玩一玩数据,各种维度、各种交叉,从中发现不寻常的数据,再从不寻常中挖掘背后的原因。
比如上图
在图文分析-图文统计页面有排阅读渠道的按钮,可以查看各渠道的阅读来源对比。
你会发现朋友圈的阅读量远高于其他渠道,说明标题、内容有促转发到朋友圈的因素,才有可能成为爆文。
你就会有意识在标题、内容里布置促转发到朋友圈的元素了。
4、常规数据分析方法
a、列表
简单的列表,公众号数据后台已经提供,更全的数据表格可以选定维度后导出excel表,做更深度的处理。
b、作图
基础的图形展示,公众号后台也已提供,更复杂的图标,可以利用下载的数据表格进一步处理。
c、数学处理
上面这些方法,是百度搜的,其实只用简单数学运算,对于普通公众号运营者完全够用了。
表格和数据列出来到底看什么呢?
看对比,看变化,看异常
比如观察基于时间维度的各数据项:比如按月、按日、按小时去分析各类数据项的变化,不同的维度可以发现不同的问题;
比如观察图文的各种数据变化:每篇文章的阅读量增长、衰减趋势、阅读、转发数据变化,找到你粉丝群体的喜好;
比如每天把后台给出的各种基础数据都扫一遍:发现与日常趋势不一样的异常数据,再挖掘背后的原因,很可能挖出金矿哦。
公众号运营数据分析的示例
1、几点群发好?
2、标题和内容哪个更重要?
3、头条和二条有区别吗?
4、粉丝都是用什么方式关注你的?
5、什么样的内容是好内容?
你一定以为接下来,我会用数据分析工具解答一下上面的问题
然而,并没有
方法你已经学会了,打开后台,去如饥似渴地玩弄自己的数据吧!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16