
大数据分析要避免常犯的5个错误
人们常常自我陶醉于做出了几张漂亮的图标或者PPT。这些总结性的表达看上去很令人振奋,但我们不应该基于这些肤浅的总结来做决策,因为这些漂亮的总结性陈述并不能真正反映问题的实质。
就算了解数据分析,聪明人在进行数据分析时,也会犯错。下面5个错误就是聪明人也常犯的5个错误:
1. 走得太快,没空回头看路。
初创公司里的人们仿佛一直在被人念着紧箍咒:“要么快要么死,要么快要么死。”他们是如此着急于产品开发,以至于他们常常没有空想用户对产品的具体使用细节,产品在哪些场景怎么被使用,产品的哪些部分被使用,以及用户回头二次使用产品的原因主要有哪些。而这些问题如果没有数据难以回答。
2.你没有记录足够的数据。
光给你的团队看呈现总结出来的数据是没有用的。如果没有精确到日乃至小时的变化明细,你无法分析出来数据变化背后看不见的手。如果只是粗放的,断续的统计,没有人可以解读出各种细微因素对于销售或者用户使用习惯的影响。
不要害怕量大。对于初创企业来说,大数据其实还是比较少见的事情。如果正处于初创期的你果真(幸运地)有这样的困扰,可以使用Hadoop平台。
3. 其实你的团队成员常常感觉自己在盲人摸象。
许多公司以为他们把数据扔给Mixpanel, Kissmetrics,或者Google Analytics就够了,但他们常常忽略了团队的哪些成员能真正解读这些数据的内在含义。你需要经常提醒团队里面每一位成员多去理解这些数据,并更多地基于数据来做决策。要不然,你的产品团队只会盲目地开发产品,并祈祷能踩中热点,不管最终成功还是失败了都是一头雾水。
举个栗子。有天你决定采用市场上常见的病毒营销手段吸引新用户。如你所愿,用户量啪啪啪地上来了。可此时你会遇到新的迷茫:你无法衡量这个营销手段对老用户的影响。人们可能被吸引眼球,注册为新用户,然后厌倦而不再使用。你可能为吸引了一帮没有价值的用户付出了过高的代价。而你的产品团队可能还在沾沾自喜,认为这个损害产品的营销手段是成功的。
4. 目光短浅。
任何一个好的数据分析框架在设计之初都必须满足长期使用的需要。诚然,你总是可以调整你的框架。但数据积累越多,做调整的代价越大。而且常常做出调整后,你需要同时记录新旧两套系统来确保数据不会丢失。
因此,我们最好能在第一天就把框架设计好。其中一个简单粗暴有效地方法就是所有能获取的数据放在同一个可延展的平台。不需要浪费时间选择一个最优解决方法,只要确认这个平台可以装得下所有将来可能用到的数据,且跨平台也能跑起来就行了。一般来说这样的原始平台能至少支撑一到两年。
5. 过度总结
虽然说这个问题对于拥有大数据分析团队的公司来说更常见,初创公司最好也能注意避免掉。试想一下,有多少公司只是记录平均每分钟多少销售额,而不是具体每一分钟销售了多少金额?在过去由于运算能力有限,我们只能把海量数据总结成几个点来看。但在当下,这些运算量根本不是问题,所有人都可以把运营数据精确到分钟来记录。而这些精确的记录可以告诉你海量的信息,比如为什么转化率在上升或者下降。
人们常常自我陶醉于做出了几张漂亮的图标或者PPT。这些总结性的表达看上去很令人振奋,但我们不应该基于这些肤浅的总结来做决策,因为这些漂亮的总结性陈述并不能真正反映问题的实质。相反,我们更应该关注极端值(Outliers)。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-29从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-292025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-29PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-29t 检验与 Wilcoxon 检验:数据差异分析的两大核心方法 在数据分析的广阔领域中,判断两组或多组数据之间是否存在显著差异是一项 ...
2025-07-29PowerBI 添加索引列全攻略 在使用 PowerBI 进行数据处理与分析时,添加索引列是一项极为实用的操作技巧。索引列能为数据表中的每 ...
2025-07-29