京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据如何快速落地的战略方法
数字信息大爆炸,世界潮流浩浩荡荡,大数据时代已然来临。您的公司将如何应对大数据时代的挑战呢?战略决定未来的发展方向。没有清晰的大数据战略,不了解大数据,您的公司将如同盲人摸象般不仅无法驾驭大数据,而且会被大数据淹没。那大数据如何落地,本文主要讲大数据战略落地。
为了什么需要考虑大数据战略呢?
据调查显示,大中型企业,甚至中小规模的企业都意识到,大数据可以为他们的业务带来好处,以及提升他们企业的竞争力。
调查显示,这些中小企业比其更大规模的竞争对手更加快速的利用大数据。虽然大多数受访者承认大数据价值,然而,不同的受访者对大数据这一术语有着不同的理解。28%的受访者把大数据定义为交易数据的海量增长,而24%的受访者形容它是一种新技术,帮助企业迎接海量数据的挑战。18%把大数据定义为从社会媒体、移动设备和终端设备所产生的海量信息,而19%把它理解成合规性的存储和归档数据。
无论怎样定义大数据,据调查结果显示,大中小型企业知道大数据可以带来诸多好处。
每家公司都应该思考大数据战略,无论他们公司规模是大还是小。大数据融合了社交媒体、终端设备、移动设备和企业内部等的数据,它正在史无前例的增长。没有创建大数据战略的企业将在新一轮竞争中迷失,而创建了大数据战略的企业,将受益于大数据的即时访问数据和即时洞察力的能力,它使得企业在为自己的客户群服务时,企业可以采取更敏捷的业务操作,更好地吸引并留住客户。
大数据会给企业带来什么样的影响?
从“直觉主义”到量化分析,企业管理让大数据做主,大数据战略成为新的竞争战略的支撑,大数据变革企业决策。
目前,传统的企业管理流程是出现问题、逻辑分析、找出因果关系、提出解决方案,使问题企业成为优秀企业,这是逆向思维模式。大数据竞争战略咨询流程是收集数据、量化分析、找出相互关系、提出优化方案,使企业从优秀到卓越,是正向思维模式。
“数据是未来竞争优势的基础,将是重要的资源。” “云计算、移动互联网、社交网络和大数据正快速发展,这样的技术进展将改变企业运营的方方面面。”大数据将改变企业决策、价值创造和价值实现的方式。以后,更多的决策将基于大数据分析而不是个人直觉。
大数据时代最大的转变是放弃对因果关系的探寻,取而代之关注相关关系,这是舍恩伯格在《大数据时代》中的描述。也就是说只要知道“是什么”,而不需要知道“为什么”。这与现有科学研究思维惯例不同,对人类的认知和与世界交流的方式提供了全新的模式。舍恩伯格指出大数据应用的三个思维变化:随机样本到全体数据;精确性到混杂性,尤其是大数据的简单算法比小数据的复杂算法更有效;因果关系到相关关系。
大数据的技术挑战显而易见,但其带来的管理挑战更为艰巨要从高管团队的角色转变开始。大数据最重要的就是它会直接影响企业怎样做决策、谁来做决策。在今天的整个商业世界中,人们仍然更多依赖个人经验和直觉做决策,而不是基于数据。在信息有限、获取成本高昂且没有被数字化的时代,让身居高位的人做决策是符合实际情况的。这种决策者和决策过程是直觉主义流派,现在这种方式遭遇了大数据的挑战。
基于大数据平台的量化分析
大数据挑战直觉,首先要做的是量化分析。企业管理学界因观点不同而分为众多派系,但是“不会量化就无法管理”的理念却是共识。这一共识足以解释近年来的数字大爆炸为何无比重要。有了大数据,管理者可以将一切量化,从而对公司业务尽在掌握,进而提升决策质量和业绩表现。
此处的大数据的量化分析与传统的“数据分析”有相同之处,大数据也力图从数据中收集智慧,并将其转化为企业的优势。不同之处在于大数据数据量巨大、产生数据速度快、种类多样。当一个数据源具备这三个性质的时候,它就形成一个平台。那些天生带有数字基因的企业,比如谷歌和亚马逊,已然是大数据平台。但是,对于传统企业而言,运用大数据获得竞争优势的潜力可能更大。企业可以做精准的量化和管理,做更可靠的预测和更明智的决策,可以在行动时更有目标、更有效率。
伴随商业世界其他一些深刻的变革,公司向“大数据驱动”转型必将遭遇巨大的挑战,它需要管理者具有放手让“大数据说话”的意识、对大数据量化分析的能力、利用大数据提升业绩的管理能力。
大数据决定业绩
如何运用大数据提升公司业绩?各行各业对大数据的态度和应用方法五花八门。但是,其中有一定的关联性:越是那些自定义数据驱动型的公司、平台型公司,越会客观地衡量公司的财务与运营结果。
大数据带来更准的预测,更准的预测带来更佳的决策和管理,零售业也有这样的案例。美国零售巨头西尔斯公司收集其专售的三个品牌的客户、产品以及销售数据,从这些海量信息中挖掘价值。大数据潜在价值巨大,挖掘的困难也巨大:这些数据需要超大规模分析,且分散在不同品牌的数据库与数据仓库中,不仅数量庞大而且支离破碎。西尔斯公司需要八周时间才能制定出个性化的销售方案,但往往做出来的时候,它已不再是最佳方案了。
西尔斯集团开始使用群集收集来自不同品牌的数据,并在群集上直接分析数据,而不是像以前那样先存入数据仓库。为了避免浪费时间,西尔斯集团先把来自各处的数据分析之后再做合并,这种调整让公司的推销方案更快、更精准。
当大数据应用于供应链管理的时候,它让我们了解为什么一家汽车制造商的产品故障率突然飙升;它可以持续详细调查和处理几百万人的医保状况;它还可以基于产品特性的数据集,为在线销售做出更好的预测和规划。大数据在其他行业的应用也同样成效显著,无论金融业、旅游、政府部门还是机械维修,在市场推广、人力资源管理方面也都有极大的功用。
当然,基于大数据战略的管理也有很多挑战。调整领导力、人才、技术、决策、文化才能应对大数据战略转型。
企业只有找到将数据科学与传统技能完美结合的方式,才能打败对手。不是所有的赢家都会将大数据用于其决策制定,但数据告诉我们,这样确实胜算最大。
那大数据战略如何具体落地呢?
大数据如何落地呢?同时,经常听到很多大数据的概念和趋势,但是落地而务实的介绍相对较少。笔者根据大数据分析领域的实际从业经验,总结出大数据战略落地方法。下面讲逐层介绍。
第一是数据基础平台层(Hadoop优化,集群优化和安全管理优化),金字塔的最底层也是整个金字塔的基础层,如果基础层搭建不好,上面的应用层也很难在企业运营中发挥效果。没有数据或者没有高质量的数据,所有的分析都是误导,所有的数据挖掘都是错误的引导。
第二是数据抽取集成层,数据抽取包括结构化数据抽取和非结构化数据抽取,WEB数据抽取。
第三是NO SQL数据存储层,这里包含高频内存数据库、图形数据库、文件数据库、键值数据库等的建设管理。
最四是分析可视化平台层,这包含大数据可视化、大数据分析平台和海量数据查询的建设。
在进行大数据战略建设时,先分析本公司大数据现状、差距和需求,依据企业的信息化实际情况,我们就可以制定大数据的战略目标了。大数据战略的制定是整个大数据建设的灵魂和核心,它将成为整个组织大数据发展的指引。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27