
大数据如何快速落地的战略方法
数字信息大爆炸,世界潮流浩浩荡荡,大数据时代已然来临。您的公司将如何应对大数据时代的挑战呢?战略决定未来的发展方向。没有清晰的大数据战略,不了解大数据,您的公司将如同盲人摸象般不仅无法驾驭大数据,而且会被大数据淹没。那大数据如何落地,本文主要讲大数据战略落地。
为了什么需要考虑大数据战略呢?
据调查显示,大中型企业,甚至中小规模的企业都意识到,大数据可以为他们的业务带来好处,以及提升他们企业的竞争力。
调查显示,这些中小企业比其更大规模的竞争对手更加快速的利用大数据。虽然大多数受访者承认大数据价值,然而,不同的受访者对大数据这一术语有着不同的理解。28%的受访者把大数据定义为交易数据的海量增长,而24%的受访者形容它是一种新技术,帮助企业迎接海量数据的挑战。18%把大数据定义为从社会媒体、移动设备和终端设备所产生的海量信息,而19%把它理解成合规性的存储和归档数据。
无论怎样定义大数据,据调查结果显示,大中小型企业知道大数据可以带来诸多好处。
每家公司都应该思考大数据战略,无论他们公司规模是大还是小。大数据融合了社交媒体、终端设备、移动设备和企业内部等的数据,它正在史无前例的增长。没有创建大数据战略的企业将在新一轮竞争中迷失,而创建了大数据战略的企业,将受益于大数据的即时访问数据和即时洞察力的能力,它使得企业在为自己的客户群服务时,企业可以采取更敏捷的业务操作,更好地吸引并留住客户。
大数据会给企业带来什么样的影响?
从“直觉主义”到量化分析,企业管理让大数据做主,大数据战略成为新的竞争战略的支撑,大数据变革企业决策。
目前,传统的企业管理流程是出现问题、逻辑分析、找出因果关系、提出解决方案,使问题企业成为优秀企业,这是逆向思维模式。大数据竞争战略咨询流程是收集数据、量化分析、找出相互关系、提出优化方案,使企业从优秀到卓越,是正向思维模式。
“数据是未来竞争优势的基础,将是重要的资源。” “云计算、移动互联网、社交网络和大数据正快速发展,这样的技术进展将改变企业运营的方方面面。”大数据将改变企业决策、价值创造和价值实现的方式。以后,更多的决策将基于大数据分析而不是个人直觉。
大数据时代最大的转变是放弃对因果关系的探寻,取而代之关注相关关系,这是舍恩伯格在《大数据时代》中的描述。也就是说只要知道“是什么”,而不需要知道“为什么”。这与现有科学研究思维惯例不同,对人类的认知和与世界交流的方式提供了全新的模式。舍恩伯格指出大数据应用的三个思维变化:随机样本到全体数据;精确性到混杂性,尤其是大数据的简单算法比小数据的复杂算法更有效;因果关系到相关关系。
大数据的技术挑战显而易见,但其带来的管理挑战更为艰巨要从高管团队的角色转变开始。大数据最重要的就是它会直接影响企业怎样做决策、谁来做决策。在今天的整个商业世界中,人们仍然更多依赖个人经验和直觉做决策,而不是基于数据。在信息有限、获取成本高昂且没有被数字化的时代,让身居高位的人做决策是符合实际情况的。这种决策者和决策过程是直觉主义流派,现在这种方式遭遇了大数据的挑战。
基于大数据平台的量化分析
大数据挑战直觉,首先要做的是量化分析。企业管理学界因观点不同而分为众多派系,但是“不会量化就无法管理”的理念却是共识。这一共识足以解释近年来的数字大爆炸为何无比重要。有了大数据,管理者可以将一切量化,从而对公司业务尽在掌握,进而提升决策质量和业绩表现。
此处的大数据的量化分析与传统的“数据分析”有相同之处,大数据也力图从数据中收集智慧,并将其转化为企业的优势。不同之处在于大数据数据量巨大、产生数据速度快、种类多样。当一个数据源具备这三个性质的时候,它就形成一个平台。那些天生带有数字基因的企业,比如谷歌和亚马逊,已然是大数据平台。但是,对于传统企业而言,运用大数据获得竞争优势的潜力可能更大。企业可以做精准的量化和管理,做更可靠的预测和更明智的决策,可以在行动时更有目标、更有效率。
伴随商业世界其他一些深刻的变革,公司向“大数据驱动”转型必将遭遇巨大的挑战,它需要管理者具有放手让“大数据说话”的意识、对大数据量化分析的能力、利用大数据提升业绩的管理能力。
大数据决定业绩
如何运用大数据提升公司业绩?各行各业对大数据的态度和应用方法五花八门。但是,其中有一定的关联性:越是那些自定义数据驱动型的公司、平台型公司,越会客观地衡量公司的财务与运营结果。
大数据带来更准的预测,更准的预测带来更佳的决策和管理,零售业也有这样的案例。美国零售巨头西尔斯公司收集其专售的三个品牌的客户、产品以及销售数据,从这些海量信息中挖掘价值。大数据潜在价值巨大,挖掘的困难也巨大:这些数据需要超大规模分析,且分散在不同品牌的数据库与数据仓库中,不仅数量庞大而且支离破碎。西尔斯公司需要八周时间才能制定出个性化的销售方案,但往往做出来的时候,它已不再是最佳方案了。
西尔斯集团开始使用群集收集来自不同品牌的数据,并在群集上直接分析数据,而不是像以前那样先存入数据仓库。为了避免浪费时间,西尔斯集团先把来自各处的数据分析之后再做合并,这种调整让公司的推销方案更快、更精准。
当大数据应用于供应链管理的时候,它让我们了解为什么一家汽车制造商的产品故障率突然飙升;它可以持续详细调查和处理几百万人的医保状况;它还可以基于产品特性的数据集,为在线销售做出更好的预测和规划。大数据在其他行业的应用也同样成效显著,无论金融业、旅游、政府部门还是机械维修,在市场推广、人力资源管理方面也都有极大的功用。
当然,基于大数据战略的管理也有很多挑战。调整领导力、人才、技术、决策、文化才能应对大数据战略转型。
企业只有找到将数据科学与传统技能完美结合的方式,才能打败对手。不是所有的赢家都会将大数据用于其决策制定,但数据告诉我们,这样确实胜算最大。
那大数据战略如何具体落地呢?
大数据如何落地呢?同时,经常听到很多大数据的概念和趋势,但是落地而务实的介绍相对较少。笔者根据大数据分析领域的实际从业经验,总结出大数据战略落地方法。下面讲逐层介绍。
第一是数据基础平台层(Hadoop优化,集群优化和安全管理优化),金字塔的最底层也是整个金字塔的基础层,如果基础层搭建不好,上面的应用层也很难在企业运营中发挥效果。没有数据或者没有高质量的数据,所有的分析都是误导,所有的数据挖掘都是错误的引导。
第二是数据抽取集成层,数据抽取包括结构化数据抽取和非结构化数据抽取,WEB数据抽取。
第三是NO SQL数据存储层,这里包含高频内存数据库、图形数据库、文件数据库、键值数据库等的建设管理。
最四是分析可视化平台层,这包含大数据可视化、大数据分析平台和海量数据查询的建设。
在进行大数据战略建设时,先分析本公司大数据现状、差距和需求,依据企业的信息化实际情况,我们就可以制定大数据的战略目标了。大数据战略的制定是整个大数据建设的灵魂和核心,它将成为整个组织大数据发展的指引。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01