京公网安备 11010802034615号
经营许可证编号:京B2-20210330
|
|
|
|
随着不断增加的大数据解决方案需求,Apache Hadoop已经迅速成为存储和处理海量结构化和非结构化数据的首选平台之一。企业只需在少量基于英特尔® 至强® 处理器的服务器上部署这种开源软件框架,就可用较低的成本迅速开始进行大数据分析。随后可逐步将其 Apache Hadoop 集群扩展到数百乃至数千个节点,从而将多 PB 数据的查询响应时间缩短到次秒级。
英特尔与 Apache Hadoop 社区开展协作,支持系统管理员尽可能地实现其 Apache Hadoop 集群的最高性能同时保证复杂度处于最低限度。英特尔开发了 HiTune 性能分析器和 HiBench 基准测试套件,用它们来降低 Apache Hadoop 性能调优的复杂性,用户可以在更短的时间内更有信心地设计和实现 Apache Hadoop 解决方案。
HiTune 性能分析器
Apache Hadoop 的主要优势之一就是比传统数据仓库更容易部署和使用。然而,由于分布式环境的硬件与软件之间存在复杂的交互,因此要优化 Apache Hadoop 集群和工作负载以提高性能会面临重重挑战。为了应对这样的挑战,英特尔开发了 HiTune,为开发人员提供了开发高度可伸缩型应用程序的简单工具。这种可伸缩、轻量级、可扩展的性能分析器可以帮助您向客户交付性能更高的 Apache Hadoop 集群和应用程序。此外,还可以帮助您的客户在其集群的整个生命周期内获得更高的价值。
典型的 Apache Hadoop 查询是使用直观、高级的数据流模型编写的。这对于程序员而言非常理想,因为数据分区、任务分发、负载平衡、容错和节点通信等所有繁杂的细节都由 Apache Hadoop 运行时环境来处理。然而,隐藏这种低级复杂性也会导致性能调优成为一项繁琐的挑战。因为工程师对于硬件与软件之间的低级交互知之甚少,甚至毫不知晓,而这种认识却是理解和优化性能所必不可少的前提。工程师们通常只能依靠漫长而又耗时的试错法,而结果往往也只是能得到次优的性能。
HiTune 将监视 Apache Hadoop 集群中各服务器的关键性能指标,随后汇总这些低级指标,将这些指标与高级数据流模型相关联。这样工程师就可以获得不同任务与阶段之间动态交互的深入了解,并迅速查明拖慢性能的性能瓶颈、应用程序热点和硬件问题。
1、简化和加速性能调优。HiTune 提供了详尽的分析和可视化,对正在运行的应用程序的性能影响微不足道,而且无需修改源代码。英特尔工程师广泛利用这种工具,在很多情况下,仅凭相对简单的硬件或软件调整就实现了高达六倍的性能收益。
2、跨数千台服务器扩展分析。HiTune 可用于分析生产环境中跨数千台服务器运行、包含数十万个同步进程的应用程序。HiTune分析引擎可作为一个 Apache Hadoop 作业来运行,支持通过大规模并行执行海量性能数据的快速分析。工程师不需要分析在一个集群的某个部分上运行的部分应用程序,而是可以收集和分析完整的信心,获得更有用的洞察。
3、逐渐获得更高的价值。英特尔将继续为 Apache Hadoop 和其他分布式大数据解决方案扩展并优化 HiTune。英特尔已经利用 HiTune 调优和优化了 Apache Hive 的性能,Apache Hive 是基于 Apache Hadoop 构建的开源数据仓库。您现在积累的调优专业经验会在未来交付更高的价值。
HiBench 基准测试套件
随着市场的发展,随着客户开始以接近实时的方式利用大数据洞察力来提高收入流、盈利能力和经营效率,优化和验证 Apache Hadoop 集群的性能变得更加重要。利用 HiBench 基准测试套件,您可以跨不同的工作负载准确而又一致地度量、验证和对比 Apache Hadoop 集群的性能,为客户提供更出色的信息和信心。
HiBench 提供了对 10 种易于使用的 Apache Hadoop 工作负载的便捷访问,这些工作负载经过扩展、配置和定制,能够反映典型的部署。您可以为特定的通用任务度量性能,例如排序和文字计数,或者为更加复杂的实际应用度量性能,这些应用包括 Web 搜索、机器学习和数据分析。不同的工作负载具有不同的特征,使您能够建立测试矩阵,体现特定环境的资源需求。
英特尔将继续扩展和改进 HiBench,还会与领先供应商和标准实体联手协作,开发针对 Apache Hadoop 的行业标准性能基准测试。建立这些基准测试之后,您就具备了理解架构问题、度量和验证 Apache Hadoop 解决方案性能的更好基础。
构建一个经过验证的基础
设计全面优化的 Apache Hadoop 集群需要深入理解整个解决方案体系。可能要投入数月的时间来探索 Apache Hadoop 工作负载特征,并了解如何与底层硬件和软件交互。还可以利用英特尔多年来与目前运行某些全球规模最大、最成功的 Apache Hadoop 实现的企业之间共同研究和协同使用所得到的专业经验,这些企业包括 Google、Yahoo! 和某些顶尖的电信与金融服务企业。
英特尔将这种专业经验构造成为参考架构、调优指南和最佳实践建议,可以将它们用作设计和部署 Apache Hadoop 集群的起点。利用从硬件规范直至完整软件架构的明确指南,可以更迅速、更经济地设计、构建和配置最适宜的解决方案。
还可以在多种领先 Apache Hadoop 发布版中任意选择,所有这些发布版均已针对英特尔至强处理器而高度优化。英特尔与 Cloudera、Hortonworks、IBM 和其他商业经销商合作,确保运用的是已专门针对企业环境中的生产就绪性而进行扩展、加强和测试的软件,在英特尔架构上实现最优性能。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21