京公网安备 11010802034615号
经营许可证编号:京B2-20210330
六个步骤:助你最大化大数据的商业价值
对于许多人们津津乐道的大数据企业或组织来说,通过大数据获取商业价值似乎总是如此容易:有了大数据,我们就能更深入地了解客户的行为,并运用这些知识来增加客户的满意度,从而提高企业的盈利能力。但说的容易做起来难,真正去让一个新兴企业来实现大数据价值时,一切往往变得捉襟见肘,但不管怎么说,回顾总结一些当下实用的大数据商业实践方法总归没错。实际上,最大化大数据的商业价值可以归结为将下述的六件事做好:
1.以商业思维为出发点:对于数据科学家们来说,运用Hadoop或其他先进的大数据分析工具畅游于数据知识的海洋中是在愉快不过的事了,不过如果不把分析的结果转化为可以应用于解决现实世界商业问题的东西,那么对于时间和资源则是巨大的浪费。与业务专家合作,了解改进过程中的机遇与挑战,将会是一个大数据项目成功与否的关键。专注于一个具体的商业问题将有助于识别有用的数据集,并针对化选择适合的技术与工具。与此同时,这样的过程能够促使你步步为营,对项目进行进一步推进。
2.把目光投向将理论付诸实践的途径上:要实现真正的商业价值,我们必须对理论分析的结果进行实际的运用。这听起来毫无疑问,但事实上有太多的大数据项目都会因为走不过这一关而从此尘封,将理论分析的结果纳入商业活动并使它们因此收益往往并非易事。有时,在实验室里看起来很美好的数据有可能是不可用的;而当你在商业活动中真正需要某项数据时,它也有可能变得过于昂贵。与此同时,一系列的行业法规也对数据的可用性产生巨大的影响。
3.使用最前沿的分析方法:商业智能与商业分析方法的创新正在改变企业从用户数据中获取价值的方式。新兴的数据分析平台也因此不再是像传统的描述性报告或历史记录仪表盘那样的周期性呈现,转而成为了一个能够不断分析传入的数据,提供指导意见,并且实时可操作的庞大系统。大数据的工具与基础设施使得当今的数据分析能够更加快捷简便地对机器学习方法进行应用,从而对包括各种各样结构化与非结构化数据类型的巨大数据集进行探索。
4.拥抱多样化的分析工具:R, Python, Hive, Groovy, Scala, MATLAB, SQL, SAS;哪个才是你的最爱?这个技术创新呈爆炸性发展的世界带给我们的副作用之一,便是常常需要学习一套新的分析工具。等着你最拿手的分析工具自己升级往往不是一个好的选项,领先的分析团队将不可避免地需要使用多个工具来支持他们的业务需求,所以最好的方法是去拥抱这样的多样性,构建一个灵活多样的技能储备,用于实现由不同工具构建的各种分析模型。在一个机械化生产的环境中,将多种类型的分析模型整合到一起往往十分困难。然而,已经有诸如FICO?决策管理平台这样的现代决策管理系统,通过可扩展包以及网络服务标准等渠道实现了对上述方案的简化。
5.利用云端和各类生产力平台:当今时代,进行大数据分析已经不再需要对昂贵的基础设施和特别的专业技能进行庞大的投资。通过在云端运行你的分析项目,你可以让一个专门的第三方处理底层系统和服务,而你专注于手头的业务问题。同时,你也可以把你所需要的能力和服务外包出去,这也许只会是实现项目的总成本中的一小部分。
6.为业务专家们留足操作的余地:这是最后也是最重要的一点。最大的商业价值往往来自于商务专家们一系列可以迅速转化为差异化战略的新见解,而它们有时也能显著提高客户与股东对你的满意程度。具有交互性和高度可视化的仪表板或报告可以更好地提供信息,从而帮助业务专家提出更科学有效的商业策略;标准的决策管理组件则可以使专家们更方便迅速地纳入新的分析模型,并以此洞察他们的业务规则和相关政策;而模拟和数据可视化则可以更好地探索新的商业模式和策略可能带来的潜在影响,使它们更容易被理解,从而加快它们的审批进程,使项目最终走向成功。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27