
大数据时代:如何引领营销变革
大数据运用:在国内已成常态
据东楼所知,大数据概念在国内火爆并被各大互联网公司予以重视应该是在2012年之后,当时一本《大数据时代》作为大数据概念在国内启蒙读物并备受推崇,书中提到的一个谷歌通过大数据预测流感的案例,也让很多人第一次认识到互联网时代大数据的“威力”。
而在国内,包括阿里巴巴、百度、搜狗等拥有庞大的用户量和数据量的互联网公司,也在最近几年相继建立了大数据研究中心,通过对海量数据的分析,以及用户行为的跟踪和研究,从而能够帮助企业自身或客户在营销策略、广告投放等领域,提供更精准和可靠的方案策略。
就拿搜狗公司近日发布的一份《搜狗2014年第三季度汽车行业数据分析报告》来说,这份报告就是基于搜狗的4亿多用户在对汽车行业相关关键词的搜索、输入、浏览等而产生的庞大数据而分析出的报告,其中全面梳理了用户对汽车的价格、口碑、品牌等各个维度上的偏好,这无疑能够对汽车企业在进行广告投放时提供更加可视化的参考,而对比以往的广告投放方式则相对比较粗放,因为没有详细而具体的大数据支撑,参考的维度比较单一和片面。
包括阿里数据分析师的对于“胸大的女生更具消费能力”发现,同样也是基于淘宝、天猫等阿里的购物平台庞大的用户数据而得出的,而基于这些相关的数据,也能够指导各大电商卖家的广告投放和营销策略。
而随着国内各大互联网公司意识到数据的重要,并专门成立大数据分析机构,组织大量的工程师进行数据挖掘,大数据能力会成为各大互联网公司的必备能力,而对于大数据的运用也必将成为常态。
大数据时代:整合营销应该如何做?
另一方面,大数据时代的全面来临,不仅仅是让企业广告投放更加精准,我们的生活、工作、思维、商业乃至管理都会发生改变,甚至也影响到互联网行业的方方面面,包括网络营销。
比如,我们常常使用整合营销手段也需要升级和改变。之前,我们为了达到营销效果最大化,只是简单的对各个渠道的资源进行整合,通过规模化宣传来扩大营销效应。而在大数据时代,对于网络整合营销的玩法则不再只是营销资源的叠加,而更多的是对各类渠道进行科学而又预见性的整合和使用,而这其中对于平台和渠道各方对于大数据的融合和互通就很重要。
我们不妨来看下,搜狗与携程的一个基于大数据的“开学季”整合营销案例是如何做的?
首先,搜狗通过大数据分析研究发现,一些突发或规律性的事件,会让用户行为发生有趣的变化。比如,每年8月底到9月初的开学季,诸如“火车票”、“酒店”、“城市攻略”等关键词,被用户高频的搜索和使用,由此发现,开学季其实也是旅游季。而携程方面的数据分析表明,在线旅游市场有54.80%的用户为18~30岁的年轻用户群,而大学新生正在这一区间内,并在未来会逐步成长为主力消费人群。因此,搜狗作为一个营销平台,基于大学生用户需求,用大学生用户感兴趣的方式,在搜索、输入以及浏览等上网场景当中,“润物于无声”般的用信息和服务的方式满足大学生的旅游需求,而同时也满足了携程的营销需求。
事实上,像这类各大公司间利用大数据进行整合营销的案例,在今后或许也已将成为常态,特别是掌握着大量用户消费行为或网络产品的使用行为的大型互联网公司当中率先流行。不过,对于大数据的运用也有争议,比如在保护用户隐私方面,如何避免让用户感觉被无所不在的“第三只眼”偷窥等等,也都对各大互联网公司在大数据的挖掘和使用上提出挑战。但无论如何,在大数据在营销或其他场景的运用上,不作恶都应该是各大互联网公司谨守的底线。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29