
大数据时代的五个转变
互联网的重心逐步向着移动互联转移,各种新型智能移动设备的迅速普及带来海量数据的爆发。于是大家都在谈论大数据,大家都想用好大数据。但你真的了解大数据吗?当前的行业状况又是怎样?
事实上,大数据只是一种提法,其形态本身是数据云。正如 DCCI 创始人胡延平所说,以实时感知、分析、对话、服务能力为基础,让数据流成为商业、营销活动的核心才是关键。怎样才能让这些大数据更好地为产品或营销服务,搞清楚大数据时代的业界生态必不可少。
DCCI 互联网数据中心在今天的 Adworld2012 互动营销大会上总结了这样几个转变,我们可以结合其发布的数据报告一起来看看。
以人为中心,互联网生态结构发生转变截止 2012年6月,中国有网民 5.38 亿,其中手机网民达到 3.88 亿。同时关于三大移动智能操作系统,我们还得到这样一组数据:
大量智能移动设备接入网络,移动应用爆发性增长对数据进行深入挖掘的需求突显。而移动互联网与传统互联网融合,成为所有媒体的核心节点却是大数据实现的前提。
数据流量剧增,Web Analytics 产业曙光出现我们再来看看另一组数据:
如此庞大的数据,哪些具有商业价值?怎样挖掘出这些有价值的数据?事实上在大数据中,存储在数据库中的结构化数据仅占 10%,邮件、视频、微博、帖子、页面点击等大量非结构化数据占据了另外 90%。怎样从这些与用户行为相关的大数据中挖掘出更多有价值的内容,值得创业者思考和探索,同时也给数据分析与挖掘产业带来更多的机会。
数据不是数据存储,而是数据应用
从传统互联网到移动互联网,人们产生的数据越来越多。同时 Google Glass 的诞生让我们有理由相信,未来每个人都将产生更多的数据。但如果仅仅是简单地将这些数据存储起来,它本身并不具有任何价值。
基于用户行为分析,互联网营销趋向 开放-主动-整合正如前面所说,数据结构更加多样化,图像、视频和文档的比例占了半壁江山。有数据显示每年诸如邮件、视频、微博、帖子、手机呼叫、网页点击等类型的非结构化数据增长率达到 80%。大量的用户行为信息记录在这些数据中,互联网营销将在行为分析的基础上,向个性化时代过渡。
RTB-DSP-DMP,Ad-Exchange 发展提速,向营销云转变
RTB 即为 “人群实时竞价”,是近年兴起于美国的网络广告交易模式。该模式一经出现便在全球被大范围采用,目前欧美数字广告发行商中有 2/3 使用 RTB 模式。同时 Google DoubleClick 高管认为,到 2015年 将有 50%以上的展示广告通过 RTB 模式完成。
DCCI 提供的数据显示,中国有超过 230 万个网站,网页超 866 亿,移动应用超过 135 万。由此可以预见,国内网络广投放也将从传统面向群体的营销转向个性化营销,从流量购买转向人群购买。也就是说,未来的市场将更多地以人为中心,主动迎合用户需求。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30