
大数据驱动决胜营销未来
大数据与网络营销珠联璧合,新型数字营销模式,区别于传统互联网营销以媒体为导向的形式,而是以挖掘用户的真实需求为导向进行广告投放。AdTime副总裁李麒在第七届广告主峰会上分享了其在大数据营销方面的经验。
网络广告仍然让企业头疼
2014年,网络广告市场已经突破1500亿元的大关——网络广告炙手可热,广告形式百家齐放,这却带来了企业的选择难题。这些难题主要体现在以下方面:
媒体碎片化
首先,现在是一个媒介碎片化的时代——截至2013年中国网站450万,网页上千亿,庞大的互联网环境下超过6.31亿的受众分散在450万家网络媒体上,高成本投入往往会形成了广告浪费;低投入又恐杯水车薪无法有效覆盖。最终使得大部分中小企业面对互联网营销进退两难。
网民兴趣、行为时间、区域、媒体属性难以把控
其次,如果无法掌握网民兴趣、行为时间、区域、媒体属性等因素,互联网广告就很难做到精准投放。其中在以上因素里,受众区域化这一点,对于受众精确的细分和勾勒,以及广告投放具有非常重要的意义。
广告环境恶化
第三,广告环境恶化——网民常被无关广告信息干扰加剧,而通过我们精确的大数据分析,能做到让合适的广告在合适的时间通过合适的渠道推送给最需要他的人,准确的智能化的广告推送在不影响用户体验的基础上又能提升网民对品牌和产品的好感度。
回报问题
如今日益成熟的抽样调查面临艰难的选择,原有的抽样设计难免误差失控,扩大样本数量无疑可以控制误差,导致费用的不断增加。
在大数据时代下,我们可以通过广告调度来不断优化广告投放产出比,这在AdTime分为同站调度和跨站调度。同站调度的意义是可以在投放产品广告时,进行针对性圈定;而当受众进入网站内容页,此时用户匹配度最高,用户停留时间最长,然后再投放活动广告,对人群进行有效牵引。这是同站调度的概念。
对于跨站调度,比如品牌在网站首页举行互动活动时,用户没有注册参加而转跳到其它网站时,我们可以更换产品诉求,进行追踪投放;而当用户进行注册之后,转跳到其它网站时,我们对受众进行新品推送,提升ROI。让每一次投放在最大程度上收获到最多的转化率。
大数据让网络广告活起来
面对这些难题,我们更需要的是一种更灵活的形式。
用户行为成就——智能管道
互联网有传统媒体所没有的优势。每个人在网上都会留下痕迹,系统通过收集分析用户的互联网足迹,浏览的网页内容,就能找到用户的兴趣关注点,对用户进行细分管理。当用户再上网时,就可以根据用户的喜好,系统自动推送匹配的、相关度高的广告了。
电子商务的崛起让网络广告走向效果时代
随着电子商务产业的崛起,AdTime有了更多展示的机会。电商客户对广告效果的要求很直接,谁能够提高点击率,谁能够带来更大的ROI;而门户网站如今也开始重视人群的细分和定向,也逐渐放弃按天售卖广告位的销售模式,更多的尝试针对不同目标人群的需要,去推送更相关的广告内容,这就给了我们更多的机会,可以帮助门户网站对广告位进行优化。
大数据正改变营销模式
以今天最受关注的O2O为例,但O2O必须形成一个完美的闭环才能拥有足够大的未来预期,线上与线下的打通其实最难的一步便是用户层面的数据统一。这里面存在四个环节:1、如何通过大数据判定,向网站导入精准有价值的流量;2、再如何将价值用户引导至线下商户,并完成消费;3、线下商户又如何把消费数据记录并提交至线上进行分析,沉淀出有效数据对用户特征进行判定。4、从线上对不同特征的用户群体进行针对性个性化的服务,最终再次引入线下商户进行消费。
这是一个复杂的闭环,其中对数据的提炼和处理是最为重要的一个环节。大数据的出现将会是一个全新的局面,地面的数据也将归并到大数据的研究范畴,同时与互联网的数据进行统一打通,这将快速的建立起全新的营销格局。
对于互联网而言,未来的数字营销都将是基于大数据,所有的营销行为都将是以价值最大化为前提。在全媒体的覆盖下,广告将实现最佳效果转化。AdTime将进一步利用自身技术的先进性、分析视角的独特性以及信息数据的全面性,确保自身全营销数字平台的持续领先。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08