
大数据将有效应用于安全、身份和欺诈管理
21世纪以来,互联网、移动互联网、云计算、物联网导致计算环境发生重大变化,企业和组织投入大量资源改善IT安全基础设施,安全边界变得模糊和脆弱。但是各类安全事件层出不穷,国内外多起严重数据泄漏事件不断挑战安全意识底限。“恐惧源于无知”应用在信息安全领域同样适用,当各种复杂的防御机制也无法阻挡恶意入侵,当著名安全组织不断爆出安全漏洞,业内人士也在思考问题的症结。现有安全体系类似古代城堡,将重要资产(如企业内网等)使用高高的城墙(如防火墙等)团团围住。实际上,安全的边界变得模糊和脆弱,黑客攻击也具有系统化、长期化和经济利益驱动等特点,甚至有国家背景支持,城堡式安全体系已经无法适应新兴攻击技术的发展。国际安全会议RSA 2015年的主题“变化:挑战当前的安全理念”也正反应出安全界转换理念的共识。
预测攻击影响 提供主动防御
大数据的兴起为新一代安全技术提供思路,大数据开放组件为各类安全数据(如事件日志、数据包等)提供海量存储、实时处理和数据挖掘等功能,为安全厂商快速、有效建立数据分析平台提供便利。大数据技术在数据规模、数据易变性以及非结构化处理具有明显的优势,应用于安全领域主要体现在安全管理、身份管理和欺诈管理三大领域。
在安全管理方面,针对传统的威胁,防御和检测技术通常以特征检测为主,新型威胁更多利用0Day漏洞进行攻击。由于无法提前明确特征信息,导致防御侧已有SIEM系统及检测技术失效。企业和组织需要从被动防御转换到主动防御。根据多种渠道数据来源,威胁情报(Threat Intelligence)基于大数据处理和分析技术实现预测攻击影响以及识别未知威胁。通过威胁情况,安全人员在第一时间了解IT资产面临的新漏洞、新型攻击方法和工具,威胁环境变化等,在威胁溢出之前阻断攻击者。2013年以来,威胁情报一直保持北美安全技术发展的热点。此外,安全企业和组织也积极共享威胁情报信息,采用“群防群控”方式提升资源的利用率并将安全损失最小化。威胁情报共享以来数据的标准化和规范化,美国相关工作主要由政府部门和安全企业共同推动。2014年,Fortinet、Palo Alto等安全公司建立网络威胁联盟(Cyber Threat Alliance),共享威胁情报,全面提升威胁态势感知能力。美国将网络威胁情报信息共享视作提升其联邦政府信息系统安全的必要手段之一,NIST发布NIST SP 800-150网络威胁信息共享指南的草案,将信息共享、协调、协同扩展至计算机安全事件响应生命周期。
颠覆传统认证方式 识别欺诈特征
身份认证是信息系统中确认操作者身份的过程,也是授权操作的基础。传统的认证方式通过用户知道的秘密(口令等)、用户拥有的凭证(短信验证码等)和用户所属的特性(指纹等)来鉴别用户。上述技术面临以下问题:(1)数据泄漏严重,密码不可靠;攻击者通过泄漏数据、社工等方式很容易获得账号、密码;(2)作为常用的二次认证方式,短信验证码同样面临被截取的风险;U盾具有安全性优势,但使用不便;(3)生物认证的用户体验好,但适用范围受到限制,只能在支持生物特征识别的设备上运行。新型身份认证技术需要安全性和易用性的平衡。基于大数据的身份认证通过收集用户、设备等行为数据,分析获得用户和设备的行为特征,并判断当前认证是否满足已有特征,如不满足则叠加多种认证方式。因此也被称为自适应(Adaptive)或基于风险(Risk-based)认证。大数据身份管理的核心是风险的判定,依赖于用户行为(例如时间、IP)和设备行为(例如设备号、失败次数),通过安全策略控制认证方式,黑客可能窃取账号、密码之后也无法完成认证。同时,对于绝大多数正常用户可以简化认证流程。
反欺诈是大数据安全应用的另一类场景,例如Yahoo和Thinkmail利用大数据分析技术过滤垃圾邮件,DataVisor提供恶意账户识别技术帮助Yelp减少虚假评论。这类欺诈行为跟业务流程直接相关,用户的刷单、刷奖类营销欺诈,盗卡类交易欺诈以及商户和用户串谋欺诈等场景识别不尽相同。通过收集设备数据、用户数据和业务数据,结合机器学习技术,欺诈管理可以识别欺诈特征,提升欺诈成本。
当然,大数据作为新型安全技术也带来多方面挑战。首先是数据的可信度,大数据安全的效果严重依赖数据质量,低质量的数据可能导致错误的结论。机器产生数据的可靠性具有保障,但也无法完全避免伪造或刻意制造的数据。因此需要从数据来源的真实性、数据传播途径和数据处理过程等多方面确保数据的可信。其次,用户隐私保护也成为各方关注焦点,通过数据碎片还原出有价值的信息,可能属于数据拥有者不愿意被披露的敏感数据。大数据安全也需要从大数据存储、搜索和计算等多方面全面考虑用户的隐私保护问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16