京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据 银行风险管理的“金钥匙”
数据越丰富则分析结果会越强大,大数据分析及相关分析数据迎来了黄金期。
随着数据量的增大以及数据多样性的增强,如何驾驭好这些数据让它更好的为决策服务、减少损失以及增加收益变得越来越重要。银行的业务经营依托于对风险的评估,以及对评估结果加以利用。这对当下的银行管理者提出更高的要求,包括分析获取可信的数据以及与公司员工分享得到的结果。
风险一直在增长
正如最近一些头条所指出的,风险的复杂性在增加,这种复杂性遍布于银行业的各个角落。银行业的集中度越来越高,更多的大型机构要协调不同层级和维度的关系,包括产品、流程、技术、组织架构以及合同等。金融创新带来了新的工具,不同市场之间的关联性增强也带来更频繁的跨界信息流动。由此带来的问题是,当风险出现的时候,市场的波动率会瞬时增加,从而造成会带来巨大流动性风险的“波动聚类(Volatility Clustering)”,就像2007—2009年的金融危机以及2001年的互联网泡沫破裂那样。
显然,银行业的风险非常广泛。“我们已经定义了13种系统性风险:网络风险、高频交易风险、对手风险、担保风险、流动性风险等等,同时我们也从如此多的大型银行的清算和结算活动中总结出一整类的关联性风险定义”。Mike Leibrock说,Mike是美国存款信托清算公司(DTCC)负责系统风险的副总裁(DTCC为所有的大型银行提供清结算服务)。
作为监管者,当然也包括他们监管的机构,还是像之前一样关注与识别和管理金融系统中的潜在风险,同时数据的管理实践也在不断变化。
大数据的潜力
银行在处理储存在他们数据库的数据方面都是专家。他们能够从把每天发生的数据整理成报告提供给中台和前台人员,供他们研究最新的市场趋势。
大数据是不同的。它数量巨大、形式多样并具有瞬时性,它可以从移动设备、社交应用、网页访问以及第三方获取,包括信用消费等方面的数据。它可以帮人们揭示那些连专家都不易察觉到的潜在消费习惯。大数据能够帮助银行从更细致的层面上发掘潜在的风险,可以细致到单一客户、产品以及投资组合水平,有些甚至可以更细致,达到信用审批以及定价层面。
为了了解更多关于大数据和银行风险管理的关系,EIU调查了6大洲55个国家的208位风险及合规管理上的高管,涵盖了零售银行(29%)、商业银行(43%)、投资银行(28%)。结果显示越来越多的银行界开始倾向于使用大数据,但他们仍然面临着一些挑战,主要是将分析结果应用在更高级的风险管理中,尤其是流动性风险和信用风险。
调查要求高管们为他们自己的机构打分,主要在控制以及缓解风险方面。结果显示了如下的一些相同点,包括:
基本的大数据工具来进行整理和获取那些有序及无序的数据(有35%高于平均分及7%低于平均分的高管选择了此项);更高级的大数据工具来进行预测和视觉化分析(有33%高于平均分及8%低于平均分的高管选择了此项)。
换句话说,那些表现更好的银行更喜欢使用多种不同的方法来进行风险分析,包括基础的和高级的分析工具。更进一步说,他们也更喜欢靠大量的数据解决风控问题。
支持风险管理的大数据投资
除了来自四个区域,受访者还来自三类机构:43%的商业银行,剩下的一半来自零售银行,一半来自于投资银行。相比较于其他类型的风险,三类机构的受访者均更加关注流动性风险和信用风险。同时,随着行业和地区的不同,他们赋予不同风险的重要性不同。
在所有地区和行业中,绝大部分银行已经或者很快在支持风险管理中投资大数据。五分之四的银行(81%)定期向高级管理人员提供关于银行风险状况的综合报告,另外有15%的银行打算在未来三年内也这样做。几乎所有银行都在致力于推动风险管理信息至银行高级决策者。但问题是他们是否获取到了正确的大数据工具并且真正有效。
仅仅过了十分之四的受访者创建风险概况时,拥有整合、操作和质疑大数据的能力。近半数的受访者在未来三年有计划在这些工具上进行投资。
先进的大数据工具的占比稍微有些低。例如,预测分析和数据可视化:41%的正在使用它们,44%的预计在未来三年内获取它们。
尽管如此,来自各大洲的绝大多数的零售银行、商业银行和投资银行都致力于利用大数据的力量。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19