
大数据告诉我们A股将怎么走
投资,关键在于克服情绪,遵守规律。这是银河策略近年来在所有场合最强调的。说起规律,我们留给市场的一个经典是2013年11月的坚定看多,“古今中外百年历史统计表明,无抵抗下跌的极限没有超过23个月的,A股已经无抵抗下跌超过21个月,大反转即将发生。”随后,党的八项规定吹响了A股反转的号角。无论基本面是什么,大数据下的规律没有被突破。
对各国证券历史的大数据扫描,是银河策略的一大研究特色。无独有偶,近期网络中也有对美国百年股市涨跌的梳理,我们结合银河策略的研究,综合整理,很有意思的是,我们的一些常识会被打破,对股市的规律会有更深刻认识。
下跌的时间一般有多长?
那么,通常下跌的频率和持续时间是怎样的呢?Capital Research & ManagementCo.梳理了1900年至2014年美国股市的历次涨跌,幅度为5%的下跌大约每年出现3次;10%或10%以上的调整大约1年发生1次;下跌15%的情况大约2年出现一次;最后,熊市——也就是20%以上的跌幅——每3.5年发生一次。
中国的情况如何呢?幅度为5%的下跌每年多达6.6次。可见,对于A股来说,5%的下跌,是家常便饭,不能当做警戒指标。10%的下跌,每年约为3.9次,仍然比美国人5%下跌的发生频率略高,基本可以当做投资人的回撤警戒线。大于15%的下跌平均每年2.4次;于20%的下跌,竟然每年也达到1.3次之多。
从更国际化的角度来看,CapitalGroup分析了1988至2015年的MSCI世界指数,发现了与美股基本相似的下跌频率。在全球市场上,5%的下跌大约每年发生2次;10%的调整每2年1次;15%的下跌每3.5年一次;跌幅达20%以上的熊市每6年1次。全球市场之所以变得缓和,是因为不同国家的涨跌周期有所不同,MSCI世界指数部分抵消了不同国家的涨跌,从而变得缓和。可见,一个真正意义上的全球配置者,面临的波动风险要小得多。
不同级别的下跌在数量分布上有何规律?
A股25年间164次幅度超过5%的下跌中,66次跌幅不超过10%,占比40.2%;39次跌幅为10%-15%,占比23.8%;26次跌幅为15%-20%,占比15.9%;33次跌幅超过20%,占比20.1%。也就是说,真正跌幅超过20%的下跌约占下跌总次数的五分之一。
哪些年份涨跌切换较为频繁?
根据国外统计的结果,随着人们对经济、财政和货币政策的了解更加深入,大幅下跌和剧烈波动的情况在现代社会发生的频率明显降低了。那么A股又如何呢?A股市场历史上有三个振幅较大的阶段,分别是建立早期、2006到2009年以及2014到2015年,相应年份的股指下跌次数也相对较多,反映了更为频繁的涨跌切换。但总体而言,除了市场疯狂时期之外,A股的震荡频率大体上略有降低趋势。
金融危机之后的情况有什么不一样?
自2009年标普500见底之后的5年半里,美国股市经历了大约17次下跌,其中,有13次的跌幅介于5%至8%之间;2011年末及2012年春天,美股经历了两次大约9.5%的下跌,几乎跌入调整区间;2010年春天和2011年夏天,分别有2次接近熊市的表现,跌幅达到了16%和18.5%。
总体来说,股市下跌5%以上的频率大约为1年2次;跌幅近10%的调整大约为2年半一次;15%以上的跌幅大约也是2年半出现一次。下跌的频率与1900至2014年的总体情况相似,稍有降低。考虑到美国股市处在一个长达6年的牛市中,这样的结果并不让人意外。那么,过去的6年好日子之后,接下来的6年会如何呢?我们倾向于“大波动在所难免”。这或许正是过去几个月美股同样经历较大调整的原因。
A股从2009年初以来,经历了33次上涨和33次下跌。在下跌的次数中,17次跌幅超过10%,其中10次跌幅超过15%,其中2010年2季度的最大跌幅达25.34%,2015年6月的最大跌幅为21.55%,2015年8月的最大跌幅为26.7%。无疑,A股在金融危机后,又上演了一轮惨烈的下跌,在短短一个季度时间里,发生了四次超过10%的下跌,分别为21.55%、18.00%、12.15%、26.7%,9月上旬还发生了一次幅度为7.34%的下跌。
反弹一般持续多久?
虽然股市过去的规律不一定代表未来的走势,但梳理出来的历史数据仍然具有一定的参考意义。投资者一定有这样的感受:下跌总是很快,而反弹却往往是缓慢的。回看2009年以来美股的17次下跌,却发现这个感受并不准确。在这17次下跌中,平均需要26个交易日,股市才会见底,而令人意外的是,回到之前的高位,也需要26个交易日,与下跌周期的比例是1:1。而从统计数据的中值来看,下跌见底需要19个交易日,而反弹只需要15个交易日。
1991年以来的A股涨跌数据,告诉我们,上涨平均持续19.8天,中值9天;而下跌平均持续17.1天,中值也是9天。其中,10%以上的反弹,平均需要25.08天;15%以上的反弹,平均需要32天;20%以上的反转,平均只需要38.21天;30%以上的反转,也只需要45.3天;而50%以上的大反转,平均需要74.73天,1991年以来共11次。而20%以上的下跌,仅32次,平均耗时28.42天。其中30%以上的下跌仅9次,平均耗时32.44天。
那么,问题来了,6月份以来的下跌之后,市场还有多少风险呢?一方面,机会比风险更多了;另一方面,如果不是大级别的上涨,每一轮上涨得时间,也是有限的。20%以上的反转,平均只有38.21天。
全球格局的周期表现要长的多。Wealthfront研究了1965至2014年的下跌反弹时间框架,得出了类似的结论。他们研究了这一时间段内的14次调整,发现从高点跌至最低点平均需要85天,而从低点反弹平均需要107天,下跌与反弹的周期比例为1:1.26。
如何看V型反转?
在几乎每一次小幅度的下跌中,我们都能看到一个V型反弹,这说明筑底的时间非常短。10%以下的下跌几乎都是立即反弹,2次15%以上的下跌情况有所不同,筑底的时间相对较长。这2次大幅度的调整花了大约2个月的时间见底,然后又经历了3个月的剧烈波动行情,在完全反弹之前屡创新低,下跌与反弹周期的比例为1:1.7。
A股下面会不会继续下跌呢?数据显示,市场会在最初的10天里跌至低点,接着在之后的一个月里找到真正的底部。如果本轮下跌也按照之前的走势发展,那么市场已经经过了这样的多重下跌,今后即便继续下跌,新低的底部空间也不会很大。这就是二次探底或三次探底的积极一面,历史数据显示,真正的底部与之前的低点相比并没有相差太多。
底部震荡仍是常态,泡沫退去当深挖价值
目前,市场并没有全面回稳。5%-10%左右的上下震荡仍将维持一个较长的周期。
除了市场的底部在哪里之外,投资者最关心的另一个问题当然就是应该怎么做。长期投资者应该有多样性的资产配置,不需要太关心当前市场发生了什么事。而最错的做法是恐慌,不加选择地抛售。由于底部不再深不可测,银河策略在9月3日大阅兵前夕强烈呼吁,创业板泡沫退去,机构当深挖价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09