
大数据系统与关系型数据的共存
大数据在2011年崭露头角,2012年一飞冲天,它可能会以一种戏剧性的方式改变数据管理的很多方面。大数据系统给管理和操纵计算机数据、连续提取、转换和加载功能、运作商业智能、动态大数据以及基于云的数据仓库等等都带来了变化。
不过,随着大数据进入2013年,已经没有什么系统技术能比NoSQL数据库和Hadoop框架更活跃了,看起来这两款产品还有更大的发展空间。根据MarketAnalysis.com 2012年的一份报告看,单单是Hadoop-MapReduce市场,预计复合年增长率将达到58%,在2018年将达到22亿美元。
NoSQL和Hadoop的出现主要是为应对非结构化数据的,比如文本数据或者web日志。就像Apache Hadoop一样,这些技术通常是从开源起步,逐渐成为新的商业产品。
Judith Hurwitz是Hurwitz and Associates公司的总裁兼CEO,该公司位于美国马萨诸塞州,她认为大数据架构和大规模并行处理大大改变了数据景象。她说:在此之前,即便数据真的对公司很重要,人们也没有能力获取巨大数据量并进行实时分析。
她认为:现在,不现实的东西正变得实用。这种情况已经把数据带出了舒适区。
SQL受创,即将回击
我们可以在网站上看到,2012年伊始,对主流关系型数据库陷入困境的预测就出现了。部分预言已成为现实。SQL关系型数据库在与未来几年可能成为其替代品的产品经过一系列斗争之后,现在(或者很快)似乎面临着关于处理整个企业大数据量过滤的最为剧烈的竞争。
这一趋势背后的推动力是企业对以更快的速率获取更多非结构化数据的渴望,这样企业才能更加依靠数据驱动做出决策。惯用的处理方式正在改变,以适应最好的新技术。
这些来自2012年特定数据管理供应商的举动展现出大数据和Hadoop对关系型数据冲击的现状:
IBM公司还在继续创立小型数据和分析公司,尽管比2011年少了些。蓝色巨人的努力方向从小的改进(比如,针对DB2 10的NoSQL图形库和InfoSphere Warehouse 10)到非常巨大的PureData系统装置,目的都是为了给企业搞定大数据。
甲骨文公司在年初推出了大数据设备。这一发布是紧跟着Oracle NoSQL数据库2.0之后发布的,Oracle NoSQL数据库2.0已经自动实现重新平衡,新的应用编程接口可以处理大型对象,与Oracle数据库有更紧密的集成,支持直接用SQL查询Oracle NoSQL数据库记录。
微软公司展示了Hadoop对Windows Azure和Windows Server支持的预览;Teradata公司发布了其Aster大数据分析产品;而Informatica公司发布了PowerCenter套件的大数据版,据说消除了Hadoop手工编码的需求,并把编程任务带入了Informatica开发环境。
SQL在2012年可能只有一两次回击,但是它积极应对市场挑战的举动有重要意义。在非主流NoSQL和Hadoop方面比较专业的公司更新了他们去年的SQL认证。一个典型的例子是Hadoop创立了Cloudera公司,该公司期望增强SQL与Impala的协作程度(Impala是一款Hadoop软件产品,支持标准SQL做交互式查询)。
大数据的变动
这样的举动可能代表了一定的势头人们看到SQL和NoSQL一起被提及的机会更多了。在某种程度上,SQL在早期大数据喧闹的讨论中有点被淡化了。
Ronnie Beggs是美国旧金山SQLstream公司的副总裁,该公司是一家流媒体数据库制造商。他说:在过去的几年里,由于大数据运动,SQL已经不再挂在每个人的嘴边了。同时,他还说:大数据和NoSQL双剑合璧,已经冲击到了主流。
他还表示,在2013年,我们应该会看到明显的变化,并提到近几年在使NoSQL数据库更好地适应SQL风格的开发方面所作出的各种努力。
Beggs说:它是不断变化的。我们接下来这一年会看到SQL的回归,它将成为所有大数据平台的接口。
这种发展走向了Hadoop框架、NoSQL和SQL方法的共存,这标志着在大数据的成熟度方面迈出了新的一步。2013年,大数据有可能从一个热门话题变为切实的实践。
Colin White是美国俄勒冈州Ashland BI研究机构的总裁和创始人,他说:我认为人们正努力通过大数据的炒作,来真正理解业务价值。在2013年,我认为我们将看到人们从大数据中获得业务价值的优秀案例。问题不在于大数据本身,而在于你的运用。
虽然企业对新技术有着广泛的兴趣,但不是所有公司都会以同样的程度全面部署大数据系统。关于这一点,在最近TechTarget举办的一次重点银行会议上,一位集成服务经理也有所提及。
他认为银行业只有部分涉足了基本的大数据,而不是全部。银行和其它领域只看到了大数据的数量,而没有留意到它的非结构性。至少目前还是这样。
他谈到:大数据的含义有两部分。第一部分是它们的量很大,第二部分是数据为非结构化。银行明显属于第一部分。但是我们不会去收集tweets,至少目前还没有。我们还在观望,等待金融数据服务市场的应对。(文章来自:CDA数据分析师)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16