京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据系统与关系型数据的共存
大数据在2011年崭露头角,2012年一飞冲天,它可能会以一种戏剧性的方式改变数据管理的很多方面。大数据系统给管理和操纵计算机数据、连续提取、转换和加载功能、运作商业智能、动态大数据以及基于云的数据仓库等等都带来了变化。
不过,随着大数据进入2013年,已经没有什么系统技术能比NoSQL数据库和Hadoop框架更活跃了,看起来这两款产品还有更大的发展空间。根据MarketAnalysis.com 2012年的一份报告看,单单是Hadoop-MapReduce市场,预计复合年增长率将达到58%,在2018年将达到22亿美元。
NoSQL和Hadoop的出现主要是为应对非结构化数据的,比如文本数据或者web日志。就像Apache Hadoop一样,这些技术通常是从开源起步,逐渐成为新的商业产品。
Judith Hurwitz是Hurwitz and Associates公司的总裁兼CEO,该公司位于美国马萨诸塞州,她认为大数据架构和大规模并行处理大大改变了数据景象。她说:在此之前,即便数据真的对公司很重要,人们也没有能力获取巨大数据量并进行实时分析。
她认为:现在,不现实的东西正变得实用。这种情况已经把数据带出了舒适区。
SQL受创,即将回击
我们可以在网站上看到,2012年伊始,对主流关系型数据库陷入困境的预测就出现了。部分预言已成为现实。SQL关系型数据库在与未来几年可能成为其替代品的产品经过一系列斗争之后,现在(或者很快)似乎面临着关于处理整个企业大数据量过滤的最为剧烈的竞争。
这一趋势背后的推动力是企业对以更快的速率获取更多非结构化数据的渴望,这样企业才能更加依靠数据驱动做出决策。惯用的处理方式正在改变,以适应最好的新技术。
这些来自2012年特定数据管理供应商的举动展现出大数据和Hadoop对关系型数据冲击的现状:
IBM公司还在继续创立小型数据和分析公司,尽管比2011年少了些。蓝色巨人的努力方向从小的改进(比如,针对DB2 10的NoSQL图形库和InfoSphere Warehouse 10)到非常巨大的PureData系统装置,目的都是为了给企业搞定大数据。
甲骨文公司在年初推出了大数据设备。这一发布是紧跟着Oracle NoSQL数据库2.0之后发布的,Oracle NoSQL数据库2.0已经自动实现重新平衡,新的应用编程接口可以处理大型对象,与Oracle数据库有更紧密的集成,支持直接用SQL查询Oracle NoSQL数据库记录。
微软公司展示了Hadoop对Windows Azure和Windows Server支持的预览;Teradata公司发布了其Aster大数据分析产品;而Informatica公司发布了PowerCenter套件的大数据版,据说消除了Hadoop手工编码的需求,并把编程任务带入了Informatica开发环境。
SQL在2012年可能只有一两次回击,但是它积极应对市场挑战的举动有重要意义。在非主流NoSQL和Hadoop方面比较专业的公司更新了他们去年的SQL认证。一个典型的例子是Hadoop创立了Cloudera公司,该公司期望增强SQL与Impala的协作程度(Impala是一款Hadoop软件产品,支持标准SQL做交互式查询)。
大数据的变动
这样的举动可能代表了一定的势头人们看到SQL和NoSQL一起被提及的机会更多了。在某种程度上,SQL在早期大数据喧闹的讨论中有点被淡化了。
Ronnie Beggs是美国旧金山SQLstream公司的副总裁,该公司是一家流媒体数据库制造商。他说:在过去的几年里,由于大数据运动,SQL已经不再挂在每个人的嘴边了。同时,他还说:大数据和NoSQL双剑合璧,已经冲击到了主流。
他还表示,在2013年,我们应该会看到明显的变化,并提到近几年在使NoSQL数据库更好地适应SQL风格的开发方面所作出的各种努力。
Beggs说:它是不断变化的。我们接下来这一年会看到SQL的回归,它将成为所有大数据平台的接口。
这种发展走向了Hadoop框架、NoSQL和SQL方法的共存,这标志着在大数据的成熟度方面迈出了新的一步。2013年,大数据有可能从一个热门话题变为切实的实践。
Colin White是美国俄勒冈州Ashland BI研究机构的总裁和创始人,他说:我认为人们正努力通过大数据的炒作,来真正理解业务价值。在2013年,我认为我们将看到人们从大数据中获得业务价值的优秀案例。问题不在于大数据本身,而在于你的运用。
虽然企业对新技术有着广泛的兴趣,但不是所有公司都会以同样的程度全面部署大数据系统。关于这一点,在最近TechTarget举办的一次重点银行会议上,一位集成服务经理也有所提及。
他认为银行业只有部分涉足了基本的大数据,而不是全部。银行和其它领域只看到了大数据的数量,而没有留意到它的非结构性。至少目前还是这样。
他谈到:大数据的含义有两部分。第一部分是它们的量很大,第二部分是数据为非结构化。银行明显属于第一部分。但是我们不会去收集tweets,至少目前还没有。我们还在观望,等待金融数据服务市场的应对。(文章来自:CDA数据分析师)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17