
这篇文章由Datasalt的创始人Ivan de Prado和Pere Ferrera提供,Datasalt是一家专注于大数据的公司,推出了Pangool和Spoilt SQL Big Data等开源项目。在这篇文章中,通过BBVA信用卡支付的例子详解了云计算中的低延时方案。
以下为文章全文:
使用信用卡进行支付的款项是巨大的,但是很明显,通过分析所有的交易,我们也可以从数据中得到内在的价值。比如客户忠诚度、人口统计数据、活动的受欢迎程度、商店的建议和许多其他的统计数据,这对商家和银行来说都是非常有用的,可以改进他们与市场的联系。在Datasalt,我们已经与BBVA银行合作开发了一个系统,该系统能够对多年的数据进行分析,并为网络应用程序和移动应用程序提供不同的方案和统计资料。
我们除了需要对面处理大数据输入这个主要挑战外,还要面对大数据的输出,甚至输出量比输入量还要大。并且需要在高负载下提供更快捷的输出服务。
我们开发的解决方案中有一个每月只需几千美元的基础设施成本,这要感谢使用的云(AWS)、Hadoop和Voldemort。在下面的内容中,我们将解释所提出的架构的主要特点。
数据、目标和首要决定
该系统利用BBVA的信用卡在世界各地的商店交易信息作为输入源的分析。很明显,为了防止隐私问题,数据是匿名的、客观的和分离的,信用卡号码被切割。任何因此而产生的见解总是聚集,所以从中得不出任何个人信息。
我们计算每个店和每个不同的时间段的许多统计资料和数据。以下是其中的一些:
每家店铺的付款金额的直方图
客户端的保真度
客户端人口统计
商店的建议(在这购买的客户还购买了)、过滤的位置和商店类别等
该项目的主要目标是通过低延迟的网络和移动应用提供所有这些信息到不同的代理(商店、客户)。因此,一个苛刻的要求是要能够在高负载下能够提供亚秒级延迟的服务。因为这是一个研究项目,还需要在代码和要求需要处理方面有一个高度的灵活性。
由于更新的数据只能每一次并不是一个问题,我们选择了一个面向批处理的架构(Hadoop)。并且我们使用Voldemort作为只读存储服务于Hadoop产生的见解,这是一个既简单又超快的键/值存储。
平台
该系统以Amazon Web Services为基础建立。具体地说,我们用S3来存储原始输入数据,用Elastic MapReduce(亚马逊提供的Hadoop)分析,并用EC2服务于结果。使用云技术使我们能够快速迭代和快速交付功能原型,而这正是我们需要那种项目。
体系架构
该架构具有三个主要部分:
数据存储:用户保持原始数据(信用卡交易)和得到的Voldemort商店。
数据处理:Hadoop的工作流程在EMR上运行,执行所有计算并通过Voldemort创建所需要的数据存储。
数据服务:一个Voldemort集群从数据处理层提供预先计算好的数据。
每一天,银行上传在那一天发生的所有交易到S3上的一个文件夹中。这可以让我们保留所有的历史数据每天所有的信用卡执行的交易。所有的这些数据都被输入处理层,所以我们每天都会重新计算一切,之后再处理这些数据,我们就能够非常灵活。如果需求变更或如果我们找到一个愚蠢的错误,我们只需要在下一批中更新项目代码和所有的固定数据就可以了。这让我们作出了一个开发的决定:
一个简化代码的基础架构
灵活性和适应性的变化
易于操作的人为错误(刚刚修复的错误,并重新启动的过程)
每天,控制器都会在EMR上启动一个新的Hadoop集群以及启动处理流程。这个流程由约16组MapReduce工作组成,计算各种方案。最后的一部分流程(Voldemort索引)负责构建稍后会部署到Voldemort的数据存储文件。一旦流程结束,得出的数据存储文件就会上传到S3上。控制器关闭Hadoop集群,并发送一个部署请求给Voldemort。然后,Voldemort会从S3上下载新的数据存储,并执行一个热交换,完全取代旧的数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04