
没有数据分析,物联网怎么任性
物联网快速发展,成为继大数据之后下一个IT热词。物联网概念虽然兴起了,但是物联网技术能不能发挥出作用呢?这还有待观察。物联网领域,数据分析发挥着越来越重要的作用。
业内人士向人们解释起物联网,常常会举智能家居的例子,比如智能冰箱。通过在冰箱内安装传感器,冰箱可以知道食物是否即将到期,需要如何保存,然后自动地控制温度或发出警报。但是,企业用户关心的是,自己如何从物联网中获益。
物联网
传统制造业厂商已经开始涉足物联网,物流车、制造系统和电网等都安装了传感器,监视机械性能。越来越多的公司开始收集数据。不过下一个问题是如何分析数据,只有正确地分析数据,才能实现预测性维修、设计更高效的运输线路。
美国在线金融服务供应商EnovaInternational的首席分析官JoeDeCosmo表示:“物联网帮我们解决了很多问题。”但咨询顾问DeCosmo认为,没有分析,传感器数据就是一堆噪音。他表示:“数据加分析才能解决问题。”
物联网产品的分析属性
在Gartner8月发布的《2014年新兴技术报告》中,物联网位列前茅。但很多用户认为,物联网还停留在数据收集阶段。IT风投公司ActivantCapital创始人StevenSarracino表示:“要想让物联网发挥出价值,企业必须对传感器数据进行分析,并把分析结果利用到生产流程中来。”
Sarracino认为,供应商提供的物联网产品也需要注重分析功能。很多供应商的产品中,仪表盘上的数据呈现方式特别美观,但如果不能分析数据,这一点用都没有。
零售业是深度利用物联网的一个产业。Sarracino最近投资了一家软件公司RetailNext,它收集摄像头和WiFi数据,并进行分析,了解客户的店内行为。
Sarracino表示。零售商分析客户的线上行为已经很久了,现在,他们要把战场转移到线下了。
物联网行业应用
物联网的应用不止局限在零售业。技术专家DanHussain最近开发了一套软件,分析起重机上的传感器数据,了解起重机工作情况,预测故障。Hussain表示,机器数据分析很早就开始了,但有了传感器数据,数据分析可以发挥出更大的价值。有很多建筑公司询问,他们该如何利用传感器数据提高机器效率,避免安全问题的发生。
物联网数据分析可以为企业打开新的一扇窗。Hussain表示:“我们和很多财富500强公司交流过,他们最大的困惑就是数据不能协同工作,如果能把所有数据相连,那将会产生意想不到的收获。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30