京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据分析系统应该规避的问题
大数据分析前期要做的事
其实,每一个数据都有一个ETL,就是抽取、转化,然后去加载,包括做数据的清洗。如果数据大批量进来的话,有些数据可能是有问题的,马先生举了个例子:比如说,好多地址会写得比较模糊,如果要搜索北京这个词的时候,数据仓库里可能只有一个京字,这些都要统一整理成一个,比如说北京,这样后面分析就会简单,比如山东,有人会输入“鲁”字来进行搜索,而不是山东,这就需要在大数据分析前期做好数据清理工作,做规范化,这样后面的数据分析起来就方便很多。
搭建大数据分析系统的注意事项
在搭建大数据分析系统时,有哪些需要注意的事项?马老师提到:首先要弄明白你所在企业需要什么样的数据,或者你想得到什么价值,想明白了再去做。因为做数据不像做别的东西,一定明确知道要知道你要干什么,不然这个系统搭的时候会有很多困难,不知道该怎么搭,不知道用什么技术,也不知道数据进去是否在浪费。而目前的情况是:很多企业可能会先把架构搭出来,实际上这数据每天在算,但是不知道这数据带来什么价值,所以更多是一个业务驱动的。再举个例子:比如说中国移动就想挖一挖,到底是哪一个用户老欠费,哪一个用户用得多,用的多的就给他优惠多一点……如果他有这个需求,你再把这个需求下转给下面的人,按照这个需求去开发;
其次,需要选择适当的技术。比如说你一台机器够用的,不要用两台机器,能够进来报表就不要用交互报表,因为那个都是有技术成本的,并且上线的速度会慢很多。所以建议任何一个企业在搭建数据分析以前,要特别清晰地知道其搭建的需求和目的,选择什么方案,搭它来解决什么问题,针对需求你去做一个数据分析;
再次,在没有时时性要求时,你不要自作主张,向老大提这个。因为大公司的批量已经做得非常完美了,可能批量已经带来35%的收入增加了,他要再做时时,再增加5%,而你现在什么都没有。如果说先要做时时,或者先要全部搞出来的话,可能要先一步一部把35%做好,把那个批量先做出来,然后再做时时,这样效果会更好。
不要滥搭大数据分析系统
技术这个东西都是相通的,没有一项改进都是说完全是重新造出来的,都是在改的,但是它带来的价值不一样,它带来的人的思考,就跟人从零售店买东西和网商这种不一样,但是技术,零售店也会用一些数据库,网上也可能用,要在这个上面做一些转变。马老师谈到,好多国企(这里就不点名),就是为了上项目去上项目,称自己有海量数据。当问他需要搭建的大数据系统是用来干什么,他们的答案很出乎意料:先给搭起来,先存起来,需要的时候再用,就这种思想。其实这个是没有必要的。
总结
虽然大数据现在炙手可热,大数据分析越来越火爆,很多企业都在试图拥抱大数据技术。但还是应该具体问题具体分析,因为大数据分析系统并非适合所有的企业,一些小型规模的企业在旧系统能满足需求的时候,就不要盲目地去追随潮流,舍弃旧的系统重新搭建,也可能解决了这个小缺口,但是可能会滋生其它更大的问题,这就得不偿失了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31