京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代如何加强统计档案信息化管理
大数据是用来描述和定义信息爆炸时代产生的海量数据,统计部门需要积极应对大数据带来的环境变化和需求变化,更好地开展统计档案利用工作,更大程度地发掘档案的潜在价值,更加全面地提供档案信息服务,从而实现统计档案信息化管理的跨越式发展。
走进大数据
随着经济社会的快速发展,特别是近几年经济结构和社会布局不断发生变化,统计档案资料急剧增加,同时,社会各界对统计档案的需求也大幅增加。巨量资料、大需求推动着统计档案的收集、整理和利用进入大数据时代。统计部门每年都要接待大批查阅统计档案人员,每年都要调阅数以万计的各类案卷。如何从繁杂的个性化需求和数量庞大的案卷中认识和利用规律,如何在大量提供的数据中确保企业、调查对象隐私安全?这需要统计数据的利用情况,这个过程,我们可以视为一个通过“加工”实现数据“增值”的过程。但是,统计部门如何提高对数据的“加工能力”?必须首先搞清楚大数据给统计档案工作带来的变化,根据变化寻找应变办法,提升统计分析能力。
“三大”趋势
目前,统计档案的利用取得了较好的社会效益和经济效益。但在利用种类上,多数仍局限于“实际利用”,即有特定实用目的的一般性查询利用上,只有人次数、查阅卷次数等数据,缺乏综合分析、研究预测等数据加工过程,更缺乏利用偏好规律、利用趋向等加工结果。简单的数据对于一般利用者来说意义不大,对经济发展、规划、预测和调控来说更是无关痛痒。然而,随着大数据时代到来,统计档案管理将逐步呈现“三大”趋势,也将给现有的统计档案利用带来相应的挑战。
一是大档案。载体形式更加广泛,一切与经济社会有关的、经过统计部门调查取得的文书、数据、声像、实物都被作为统计档案。数字化档案体量更加巨大,原有的纸介质统计资料,以及一切非数字化的统计档案都将通过信息技术不断地加工成电子档案。
二是大服务。大数据时代统计档案服务将朝着社会化、多元化、开放性和先进性方向发展,档案服务以利用者的个性化需求为导向,提供网络化、智慧型的服务。
三是大开发。在传统管理方式下,档案利用只是提供被动的查阅服务。在大数据时代,档案利用将延伸到使用大数据技术对档案进行大量加工和二次开发,更加注重分析、发现与预测,为利用者创造更多价值。
积极应变
面对大数据给现有统计档案利用工作带来的挑战,统计部门应积极应对,全面提升数据加工能力。
做好利用统计项目调整。一是将利用统计的关注点从数量转向效益。建议在统计档案利用项中增加利用效益项目,强调社会效益的统计,如增加利用者满意度或者利用效果项目,将利用者的需求满足状况以顺序数据的形式列入统计项,以反映利用者对档案价值的认知与认可度。二是完善数字档案利用情况统计,根据数字档案资源利用的特殊性,设置数字档案和电子文件的检索量、阅读量和下载量等统计项目。
做好利用统计工作的信息化建设。大数据时代,传统的手工登记、电脑汇总的工作模式正在失去其原有的意义。必须加快利用者自助服务终端设备、服务质量评价设备、统计软件的应用,以及信息系统的建设。利用者在自助服务终端设备上验证身份后,其利用记录及其在获取服务之后对服务质量做出的评价,都将实时传输到信息系统中自动存储。
做好专业人员配备。大数据将使利用统计工作大量化、复杂化和专业化,要求工作人员必须具备一定统计理论和实务素养。因此,要及时对相关工作人员进行专业培训,同时要把统计工作具体实践中的经验、技巧、成果等在工作人员中进行交流,便于工作人员相互借鉴、相互促进。
做好利用情况的统计分析方法运用。利用情况统计分析,是档案利用统计的最后一个阶段,在这个阶段中,通过运用各种专业的统计分析方法,使我们能够对利用情况进行清晰明确的全面认识,并依据统计分析正确估计形势,为决策提供依据。例如,对于历年的利用人次和卷次数,我们可以运用时间序列的描述性分析,通过计算数量的增长率、平均增长率来简单描述现象在不同时间的变化状况,也可以通过制作图形先观察数据随时间的变化模式及变化趋势,为进一步的预测提供基本依据。进行预测时,我们首先要判别历史数据模型是平稳序列、线性趋势,还是非线性趋势,然后结合数据多少选择用移动平均、一元线性回归,还是指数模型的预测方法。
做好利用统计成果的运用和宣传。通过统计分析,我们可能会发现统计档案利用的某些规律,如利用者的喜爱,也许还能够合理预测趋向。统计部门应该积极主动地将这些统计成果运用到服务工作中去,及时调整服务重点或者提前做好服务计划,甚至做出明确的统计预测预警。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04