
大数据长足发展:不要被商业化玩坏 应当以隐私安全为首
不论我们称之为大数据时代、互联网时代,还是物联网时代、智能穿戴时代,它们之间都有一个共同的特征,就是信息数据化。当人与物都被数据化之后,就意味着巨大的商机蕴藏到了这些数据中间,而国务院所出台的这个关于大数据的指导意见也足以证明大数据的价值。
面对大数据所蕴含的巨大价值,我并不担心其商业价值挖掘不出来,担心的是如何把握好商业挖掘的尺寸与公民隐私权之间的关系。今天,大数据的商业化已经形成。当我们通过PC登录或者访问了相关的网站,浏览了某些信息的时候,我们在电脑上的这种行为都将被记录下来。当我们再次登录一些网站,打开相关页面的时候,一些“牛皮癣”广告就会被推送到我们的眼前。
那么,有谁在推送这些“牛皮癣”广告的时候征求过用户的意见?追踪用户使用行为的商业挖掘边界到底在哪里?这些问题或许比当前推动大数据商业挖掘来说更为重要。
首先,从目前的实际情况来看,大数据商业的前端很繁华,而商业后端的法律法规则相对滞后。过度的商业化挖掘,如果在没有相关隐私权保障的情况下发生,必然会招致用户的反感。那么,商家到底应该将数据商业化到什么程度,这个尺度如何把控,也就成为当前有关部门着重关注的焦点问题。
其次,对于企业来说,哪些数据是可以挖掘,哪些数据在商业化中是不能挖掘的;对于行政部门来说,什么部门可以拥有什么样的数据使用权限……这些都存在着关键尺度问题。如果相关法律法规和政策能够及时出台,那么公民隐私安全问题就可以缓解很多;反之,如果这个指导规范一直出不来,那么公民隐私就很危险了。
尤其是在智能穿戴时代的万物数据化之后,包括人的一切行为与生命体态特征都被数据化,网络安全、数据安全,就是摆在眼前最急迫、最重大的事情。可以预见,在进入智能穿戴时代,人与物,人与互联网之间的识别关系一定不是当前的这种数字密码,而是更为复杂的生物识别技术,如步态、静脉、视网膜、心率等,借助于可穿戴设备将人与设备连接、绑定在一起。由此通过人的生理特征识别后,建立一种唯一性的身份识别特征和独一无二的ID。
显然,这种识别特征的建议就相对比较安全,尤其是对于金融系统来说,未来的支付就很安全,一旦你的设备被偷了,离开你就自动失效了。深度数据化背后的商业价值将随之放大,而同时被放大的,还有数据安全风险。不过,我们不能因为大数据的安全存在风险,就让科技发展的脚步停下来。
我们需要谨慎地对待数据安全,但亦非谨小慎微。就像我们知道网络网银不安全,但我们还是会谨慎地用,此时对于银行等机构来说就是如何通过技术来最大限度地保障用户财产安全;我们知道美国枪支泛滥,但很多人依然很“向往”美国,此时对于美国政府来说就是如何通过法律法规来杜绝这些案件的发生。
面对大数据也是如此,需要政府提高监管的水平和方式,尽可能地把犯罪的风险系数和危害降到一个合理的范围。当然社会上总有一些人想着赚歪门邪道、旁门左道的钱,这就是需要政府作为的问题,怎样有效控制。尽管目前我们还没有完全进入大数据时代,但相关的弊端、问题与安全风险已经或多或少地初露端倪。
随着国务院关于大数据文件的出台,一方面会加速大数据产业的形成,也必然会加速商业价值的挖掘。但是在这个过程中,我们尤其不能忽略了对公民隐私权的重视。所以,发展大数据产业很重要,但对于公民来说或许保护比挖掘更为重要。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-07抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-07基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-07