京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据人才储备对零售业未来有何影响
现在已经进入了大数据时代,所有的企业必然未来会触碰大数据。零售行业实际上是最早触碰大数据的,而且也是在所有行业中对大数据非常敏感的一个行业,最主要的原因,是因为零售行业与生俱来具有非常好的大数据基础。
中国的零售商们,很多年前就已经对企业的数据,企业内部的营运数据,销售数据进行了有效的存储,这些对于零售商而言,在进入大数据时代以后都是非常宝贵的财富。
零售业的数据融合
现在零售行业经常使用到的研究方法。第一个是用户画像功能,它是通过对大量的用户数据进行分析,把它进行分类,比如说年龄、性别、文化、收入,还有消费者的喜好。对消费者进行数据的建模和分析,帮助企业准确的对用户进行定位,进而引导销售。因此,零售商会使用到兴趣图谱,兴趣图谱是把人与人之间共同的兴趣绘画成图谱,分享他们共同的兴趣,找到同类客户相应的核心需求,进而引导零售行业准确地进行营销。
第二个是舆情分析,通过对社交大数据的研究,更好的了解客户对于产品各个方面的感受所带来的一些观点、评价、意见,提高客户的购物感受。
第三是动态定价,是通过对线上线下大量的数据,大量的价格数据进行判断。现在国外越来越多零售行业开始使用电子货架标签,这样通过线上线下价格数据的调整,使电子标签的普及,使动态定价成为了可能。
以上的功能全部是大数据作为支撑,大数据体量增长变得越来越快,最近两年所产生的数据量已经是人类历史数据的总和,五年以后每天甚至每一个小时产生的数据都可能是之前人类历史数据的总和,大数据已经进入到指数级增长的阶段,数据无所不在。
大数据已经成为了美国国家战略,奥巴马说过一句话:大数据是未来的石油。中国政府对于大数据方面也越来越重视,越来越关注。
6月24日,国务院发出《关于运用大数据加强对市场主体服务和监管的若干意见》,里面提出了很多扶持大数据,引导大数据发展的意见。而在年中李克强总理主持的互联网+会议上则明确提到要尽快构建自己的数据化服务平台,以免在大数据时代落伍。
大数据崛起
在麦肯锡在全球研究院的一份研究报告中,大数据对美国企业的影响,包括医疗、公共管理、制造业,当然还有很重要的是零售业。大数据的应用让美国的零售行业平均利润增长超过了60%,这个数据不是最新的。随着大数据的蓬勃发展,它给企业带来的影响会越来越大。
大数据为什么会产生?这是因为大数据体量的增长,使原来不可能找到的核心数据成为了可能,使原来不可能分析的决策结果成为可能。所以大数据直接影响到了企业的决策,它可以帮助企业做到更精准的决策,这意味着企业可以承担更低的营运风险,得到更多的利润。所以大数据不需要炒作,因为大数据给企业带来实实在在的价值。
中国才刚刚进入大数据时代,可以叫做大数据1.0时代,很多企业要应用数据进行分析,首先要构架自己的数据化存储的平台,而数据化存储的平台是依靠技术来实现因为大数据是对接企业最后一公里的服务,它是通过数据的深度分析来完成的,没有分析,只有数据,无法使企业创造价值。
随着开源结构越来越多,技术构建的费用门槛也会越来越低,甚至将来有些技术会免费。不少大数据平台应用了很多的技术,提供公益的,免费的服务。换言之,那就是说技术没那么重要,那么什么最重要呢?深度的分析和对企业未来的预测能力才是不可替代的。从这点上讲,大数据的核心不是技术,大数据的核心是分析能力。
很多人会说大数据离我们比较远,毕竟大数据很新,也许需要等一等,看一看,不必那么早的触碰。20年前,互联网刚刚进入中国,每一个人也会有这样那样的想法,觉得早、晚,在里面犹豫,但是互联网20年创造了太多的奇迹,大数据现在就在不断地创造奇迹。
如果和20年前一样等下去的话,无论是企业或是国家都可能会丧失新的发展和增长的机会。而且大数据能使企业经过应用,会看到立竿见影的作用。因此,明智的企业已经开始收集数据,分析数据,要从今天开始,要从现在开始。
企业现在运营的业务和所有行为都可以转化成数据,未来在大数据时代,对数据的营运就是对业务的营运。如果今天不收集数据,不应用数据,到未来没有数据的时候,就无法开展业务。
可以说,大数据真实可见,大数据不崇拜技术,它更关注企业未来的盈亏。大数据是一种技能,是从海量数据中去分析,发现巨大的能力。
大数据人才的价值
具有什么样能力的人才是所说的大数据人才。人才,第一个要具备对行业,对业务要熟知,不懂行业,不懂业务,其他具备是没有用的。其次,大数据变革的产生是由于技术的改革,技术的提升,所以懂一定的IT技能,懂一定的技术能力是应该的。第三个大数据不是简简单单的单一学科,它需要你掌握数学、统计、经济学、管理学、决策学等一系列的知识。这些知识可以说数据分析,如果你一定把它作为单独学科,它是一个边缘学科。
这三种能力的交集才形成了真正的数据分析能力。在国外已经把数据分析人才提到了更高的位置,把它叫做数据科学家。这一类的人才是企业将来必争的人才。
数据化人才将来可能是企业的标配,就像企业现在要有会计、财务,数据分析人才将来是企业也必须要具备的。
储备数据人才要早于储备数据和技术,这是大数据人才的应用决定的。首先大数据人才应用有三个方面:数据存储、分析数据、优化数据。不少企业已经开始关注数据存储了,找很多技术公司构建了自己的数据化分析平台,大数据的应用服务于企业的决策,第一件事情先要研究决策方法,研究各种算法,研究各种模型,要去找到数据的核心字段,要去判断数据的深度和广度,要查找互联网数据的来源,只有这样做才有价值。
第二个,有了数据以后,必须要分析。不分析,没有办法引导决策,所以优秀的分析人才可以帮助企业完成最后一公里的搭建。
第三个,优化数据,数据要不断地优化才有价值,模型需要优化,决策方法需要优化,这是需要企业不断地完善自己的研究能力,来提升数据带来的价值。可以说,数据人才对于未来企业的发展非常非常重要。
随着零售商行业发展越来越快速,线下数据已经远远不够,大数据能够帮助企业更好的把线上线下数据加以融合,大数据人才则能从这么数据当中为企业做出最有价值的方案,为企业创造越来越多的价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22