京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据人才储备对零售业未来有何影响
现在已经进入了大数据时代,所有的企业必然未来会触碰大数据。零售行业实际上是最早触碰大数据的,而且也是在所有行业中对大数据非常敏感的一个行业,最主要的原因,是因为零售行业与生俱来具有非常好的大数据基础。
中国的零售商们,很多年前就已经对企业的数据,企业内部的营运数据,销售数据进行了有效的存储,这些对于零售商而言,在进入大数据时代以后都是非常宝贵的财富。
零售业的数据融合
现在零售行业经常使用到的研究方法。第一个是用户画像功能,它是通过对大量的用户数据进行分析,把它进行分类,比如说年龄、性别、文化、收入,还有消费者的喜好。对消费者进行数据的建模和分析,帮助企业准确的对用户进行定位,进而引导销售。因此,零售商会使用到兴趣图谱,兴趣图谱是把人与人之间共同的兴趣绘画成图谱,分享他们共同的兴趣,找到同类客户相应的核心需求,进而引导零售行业准确地进行营销。
第二个是舆情分析,通过对社交大数据的研究,更好的了解客户对于产品各个方面的感受所带来的一些观点、评价、意见,提高客户的购物感受。
第三是动态定价,是通过对线上线下大量的数据,大量的价格数据进行判断。现在国外越来越多零售行业开始使用电子货架标签,这样通过线上线下价格数据的调整,使电子标签的普及,使动态定价成为了可能。
以上的功能全部是大数据作为支撑,大数据体量增长变得越来越快,最近两年所产生的数据量已经是人类历史数据的总和,五年以后每天甚至每一个小时产生的数据都可能是之前人类历史数据的总和,大数据已经进入到指数级增长的阶段,数据无所不在。
大数据已经成为了美国国家战略,奥巴马说过一句话:大数据是未来的石油。中国政府对于大数据方面也越来越重视,越来越关注。
6月24日,国务院发出《关于运用大数据加强对市场主体服务和监管的若干意见》,里面提出了很多扶持大数据,引导大数据发展的意见。而在年中李克强总理主持的互联网+会议上则明确提到要尽快构建自己的数据化服务平台,以免在大数据时代落伍。
大数据崛起
在麦肯锡在全球研究院的一份研究报告中,大数据对美国企业的影响,包括医疗、公共管理、制造业,当然还有很重要的是零售业。大数据的应用让美国的零售行业平均利润增长超过了60%,这个数据不是最新的。随着大数据的蓬勃发展,它给企业带来的影响会越来越大。
大数据为什么会产生?这是因为大数据体量的增长,使原来不可能找到的核心数据成为了可能,使原来不可能分析的决策结果成为可能。所以大数据直接影响到了企业的决策,它可以帮助企业做到更精准的决策,这意味着企业可以承担更低的营运风险,得到更多的利润。所以大数据不需要炒作,因为大数据给企业带来实实在在的价值。
中国才刚刚进入大数据时代,可以叫做大数据1.0时代,很多企业要应用数据进行分析,首先要构架自己的数据化存储的平台,而数据化存储的平台是依靠技术来实现因为大数据是对接企业最后一公里的服务,它是通过数据的深度分析来完成的,没有分析,只有数据,无法使企业创造价值。
随着开源结构越来越多,技术构建的费用门槛也会越来越低,甚至将来有些技术会免费。不少大数据平台应用了很多的技术,提供公益的,免费的服务。换言之,那就是说技术没那么重要,那么什么最重要呢?深度的分析和对企业未来的预测能力才是不可替代的。从这点上讲,大数据的核心不是技术,大数据的核心是分析能力。
很多人会说大数据离我们比较远,毕竟大数据很新,也许需要等一等,看一看,不必那么早的触碰。20年前,互联网刚刚进入中国,每一个人也会有这样那样的想法,觉得早、晚,在里面犹豫,但是互联网20年创造了太多的奇迹,大数据现在就在不断地创造奇迹。
如果和20年前一样等下去的话,无论是企业或是国家都可能会丧失新的发展和增长的机会。而且大数据能使企业经过应用,会看到立竿见影的作用。因此,明智的企业已经开始收集数据,分析数据,要从今天开始,要从现在开始。
企业现在运营的业务和所有行为都可以转化成数据,未来在大数据时代,对数据的营运就是对业务的营运。如果今天不收集数据,不应用数据,到未来没有数据的时候,就无法开展业务。
可以说,大数据真实可见,大数据不崇拜技术,它更关注企业未来的盈亏。大数据是一种技能,是从海量数据中去分析,发现巨大的能力。
大数据人才的价值
具有什么样能力的人才是所说的大数据人才。人才,第一个要具备对行业,对业务要熟知,不懂行业,不懂业务,其他具备是没有用的。其次,大数据变革的产生是由于技术的改革,技术的提升,所以懂一定的IT技能,懂一定的技术能力是应该的。第三个大数据不是简简单单的单一学科,它需要你掌握数学、统计、经济学、管理学、决策学等一系列的知识。这些知识可以说数据分析,如果你一定把它作为单独学科,它是一个边缘学科。
这三种能力的交集才形成了真正的数据分析能力。在国外已经把数据分析人才提到了更高的位置,把它叫做数据科学家。这一类的人才是企业将来必争的人才。
数据化人才将来可能是企业的标配,就像企业现在要有会计、财务,数据分析人才将来是企业也必须要具备的。
储备数据人才要早于储备数据和技术,这是大数据人才的应用决定的。首先大数据人才应用有三个方面:数据存储、分析数据、优化数据。不少企业已经开始关注数据存储了,找很多技术公司构建了自己的数据化分析平台,大数据的应用服务于企业的决策,第一件事情先要研究决策方法,研究各种算法,研究各种模型,要去找到数据的核心字段,要去判断数据的深度和广度,要查找互联网数据的来源,只有这样做才有价值。
第二个,有了数据以后,必须要分析。不分析,没有办法引导决策,所以优秀的分析人才可以帮助企业完成最后一公里的搭建。
第三个,优化数据,数据要不断地优化才有价值,模型需要优化,决策方法需要优化,这是需要企业不断地完善自己的研究能力,来提升数据带来的价值。可以说,数据人才对于未来企业的发展非常非常重要。
随着零售商行业发展越来越快速,线下数据已经远远不够,大数据能够帮助企业更好的把线上线下数据加以融合,大数据人才则能从这么数据当中为企业做出最有价值的方案,为企业创造越来越多的价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02