京公网安备 11010802034615号
经营许可证编号:京B2-20210330
MIT做了一个全自动大数据分析
信息爆炸引爆了大数据时代的到来,前一两年大数据到达了炒作的高峰,而马云则称今后 30年 属于数据技术(DT)。但是最近一段时间大数据似乎没有那么大的动静了,这固然有技术炒作周期曲线的规律作用,也跟大数据遭遇到的一些瓶颈有关。
这个最大的瓶颈之一便是人。隐藏在大数据里面的模式挖掘很长程度上需要依靠人的建模和直觉,但是数据科学家的数量却跟不上大数据的规模发展。不过 MIT 正在为打破这个瓶颈而努力,其研发的一款名为 Data Science Machine(数据科学机器)的软件实现了无人参与下的大数据分析,经过对比发现,其表现已经与数据分析师不分高下。
Data Science Machine 由 MIT CSAIL 的 Max Kanter 和他的指导老师 Kalyan Veeramachaneni 等人设计。其关键突破是它不仅会寻找模式,还会自己设计特征集。学机器学习的人都知道特征工程的重要性。特征工程是指利用数据的领域知识来创建特征以便让机器学习算法可以工作的过程,这个过程往往需要人的直觉。而 Data Science Machine 却利用了关系数据库的不同表间的结构化关系作为线索来进行特征构造,从中生成一批候选的特征集,然后再通过分析值的相关性来缩小特征集的范围,从而免去了人的参与。然后,Data Science Machine 还会把这个特征集运用到样本数据上,再用不同的方式重新组合特征来优化预测的准确率。
为了测试这套系统的第一款原型,研究人员让它参与了三项数据科学方面的竞赛,竞赛的目标是在不常见的数据集中寻找出预测性的模式。三场竞赛供有 906 支队伍参加,Data Science Machine 的成绩比其中的 615 支队伍都要高。
在准确率方面,Data Science Machine 在其中两场竞赛的准确率分别达到了 94%和 96%。另外一场的准确率略低,为 87%。但是效率方面却是人类不能比的,因为 Data Science Machine 得出结果用时在 2-12 小时之间,而人类团队的预测性算法往往要折腾数月的时间。
目前 Data Science Machine 已能对哪些学生有可能退出 MIT 的在线课程做出分析,它选出的两个特征分析学生开始写作业时间的早晚,以及在网上学习课程的时间长短。尽管这种能力看起来还不够强大,但是这只是开始,一旦机器具备真正的自我学习能力,在计算能力指数增长的作用下,其进化速度将是我们难以想象的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22