京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据创造价值需要合作共赢的商业模式
近年来,关于大数据的讨论在技术、应用和模式等多个层面展开,已被认为代表着产业发展的方向。移动宽带和固网宽带快速发展决定了电信运营商必须充分利用自身掌握的数据资源,另辟蹊径,从而实现网络价值的最大化。因此,电信运营商应用大数据是必然的,而且市场前景十分广阔。
大数据概念的横空出世,有赖于短短几年出现的海量数据。据统计,互联网上的数据每两年翻一番,而目前世界上90%以上的数据都是最近几年才产生的。当然,海量数据仅仅是“大数据”概念的一部分,只有具备4个“V”的特征,也就是Volume(海量)、Velocity(高速)、Variety(多样)、Value(价值),大数据的定义才算完整,而最后一个Value(价值),恰恰是决定大数据未来走向的关键。
大数据发展的三个必要条件
大数据的发展需要三方面的必要条件:数据源、数据交易、数据产生价值的过程。近年来,社交网络的兴起、物联网的发展和移动互联网的普及,微信、微博、智能手机、电商大行其道,诞生了大量有价值的数据源,比如位置、生活信息等数据,数据源的出现奠定了大数据发展的基础。大数据时代到来的重要标志,则是大批专业级“数据买卖商”的出现,以及围绕数据交易形成的贯穿于收集、整理、分析、应用整个流程的产业链条。大数据发展的核心,则是使用户从海量的非结构化数据和半结构化数据中获得新的价值,数据价值是带动数据交易的原动力。
IBM、甲骨文、SAP近年纷纷斥巨资收购数据管理和分析公司,在这些互联网巨头的带动下,数据分析技术日渐成熟。2013年6月,爱德华·斯诺登将“棱镜”计划公之于众,“棱镜门”事件一方面说明大数据技术已经成熟,另一方面也佐证了现在阻碍大数据发展的不是技术,而是数据交易和数据价值。
大数据技术的发展促进了云计算的落地,云计算的部署完成又反过来加大了市场对数据创造价值的期待。大数据概念提出之后,市场终于看到了云计算的获利方向,云计算市场仿佛在一夜之间爆发,在过去一两年间几乎已经被国内大方案商、大集成商瓜分殆尽——各地的一级系统集成商与当地政府合作,建云数据中心,建智慧城市;各大行业的巨头们在搭建各自行业的混合云标准,搭建行业云平台;公有云也来了,各大IT巨头想尽办法申请中国的公有云牌照。云计算从概念到落地用了5年时间,最终促成这一切的就是大数据,或者说是市场对数据价值的期待。借助于国内智慧城市概念的大规模普及,云计算基础设施已基本准备就绪,一方面具备了大数据应用的硬件基础,另一方面迫于回收云计算投资的压力,市场急需应用部署,大数据恰如雪中送炭,被市场寄予厚望。
现在,一切的矛头都指向了“数据如何创造价值?”
数据创造价值的基石是数据整合和开放
大数据服务创业公司Connotate对800多名商业和IT主管进行了调查。结果显示,60%受调查者称“目前就说这些大数据投资项目肯定能够带来良好回报尚为时过早”。之所以如此,是由于当前大数据缺乏必需的开放性:数据掌握在不同的部门和企业手中,而这些部门和企业并不愿意分享数据。大数据通过研究数据的相关性来发现客观规律,这依赖于数据的真实性和广泛性,数据如何做到共享和开放,这是当前大数据发展的软肋和需要解决的大问题。
2012年美国大选奥巴马因数据整合而受益。在奥巴马的竞选团队中有一个神秘的数据挖掘团队,他们通过对海量数据进行挖掘帮助奥巴马筹集到10亿美元资金;他们通过数据挖掘使竞选广告投放效率提升了14%;他们通过制作摇摆州选民的详细模型,每晚实施6.6万次模拟选举,推算奥巴马在摇摆州的胜率,并以此来指导资源分配。这个数据挖掘团队,对奥巴马成功连任功不可没。奥巴马竞选团队相比罗姆尼竞选团队最有优势的地方就是对大数据的整合。奥巴马的数据挖掘团队也意识到这个全世界共同的问题:数据分散在过多的数据库中。因此,在前18个月,奥巴马竞选团队就创建了一个单一的庞大数据系统,可以将来自民意调查者、捐资者、现场工作人员、消费者数据库、社交媒体,以及“摇摆州”主要的民主党投票人的信息整合在一起。这个整合后的巨大数据库不仅能告诉竞选团队如何发现选民并获得他们的注意,还帮助数据处理团队预测哪些类型的人有可能被某种特定的事情所说服。正如竞选总指挥吉姆·梅西纳所说,在整个竞选活中,没有数据做支撑的假设很少存在。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19