
大数据分析成旅游移动个性化关键_数据分析师
旅游企业Expedia、Orbitz和其他公司正在积极利用大数据来打造新一代的移动体验。这些公司希望从智能手机和平台电脑用户中获得更多的订单。
旅游业迅速意识到了移动渠道所蕴含的潜力,它能提高旅客体验并带来收益。许多旅游企业的移动渠道订单都占了很高比例。除了现有的移动预订策略以外,许多企业现在正在进一步探索数据库这个宝藏,希望开发出旅客心目中必备的新一代移动功能和服务。
从酒店业到航空业,每个企业都应该重点提升自己在移动服务方面的整体用户体验。Forrester Research的副总裁兼首席分析师Julie Ask如是说道。
航空业和酒店业以及在生态系统中的其他行业已经研发了API接口,它既能为内部使用,也可以为第三方使用来拖取数据和服务消费者。
这不是一个关于航空业或者酒店业现在把旅客服务得很好的问题。这些旅客对于航空业或酒店业来说是非常有吸引力的一个消费群体,他们频繁在旅途中使用智能手机上的旅游相关服务。每个处于旅游生态系统中的企业都希望自己是不可替代的。
酒店房价热点地图
Amadeus去年秋季发布的一份报告显示,通过提高决策、驱动产品和服务创新以及提升顾客关系,大数据可以帮助旅游企业更好地满足顾客的需求。这份报告同时也敦促旅游企业马上行动起来,从而占据先机。
Orbitz和Expedia都在利用数据来打造独一无二的移动体验,他们在此方面处于领先地位。
例如,Orbitz在一月时推出了全新的OrbitzLabs页面,以测试一系列的新工具,其中能够被消费者接受的工具将被整合入Orbitz的移动端和PC端预订引擎。
其中一个工具能够让用户依据预订日期来搜索酒店的历史房价,这样顾客就能够决定预订的最佳时机,获得最便宜的房价。酒店的房价热点地图也通过地理分布的形式提供了类似的信息。
Orbitz还提供了展示每日机票搜索情况的模拟地图。
此外,还有帮助顾客预订大型赛事举办地last-minute机票和酒店客房的工具。它们被称作Big Game Flight Finder(Big Game机票搜索引擎)和Big Game Hotel Finder(Big Game酒店搜索引擎),这些工具似乎尤其适用于移动端,因为许多航空公司和酒店移动渠道的last-minute订单获得了显著增长。
分析预订模式
对数据的重视同样体现在了一月份Expedia在移动应用和PC端推出的几个新功能上,它们分别是Flight Recommendations(机票推荐)、Scratchpad以及ItinerarySharing(路线分享)。
Expedia的研究显示,人们在预订机票前会在旅游网站间进行48次搜索。Flight Recommendations的推出就是为了简化这一过程。它通过分析顾客旅游和预订模式来为搜索者提供他们也许感兴趣的可选航线。
当顾客进行一次搜索时,他们可以和其他进行类似搜索的顾客比较搜索结果,他们的搜索词只有一两个参数的差别。Expedia希望这个能够帮助顾客更快地找到更便宜或是更方便的旅游方案。
Scratchpad为用户提供存储搜索的功能,之后他们就可以随时回来查看自己的搜索,他们也可以将内容发送到自己的邮箱。对于登录用户来说,可以在一个设备上开始搜索,然后在另外一个设备上完成搜索,内容则可以在不同的设备间共享。
Itinerary Sharing可以让顾客通过邮件、AirDrop、短信或Facebook来分享自己的旅行线路。当他们与同样使用Expedia移动应用的顾客进行线路分享时,后者也可以收到该线路相关延误和到达时间的应用推送消息。
下一代的移动旅游服务将会利用数据来打造高度个性化的体验,并开始预测顾客的需求。
例如,一家航空公司知道航班时间,甚至还有我的所在地,他们可以推测出我的需求,并通过移动端在恰当的时间提供给我相应服务。Ask女士说道。
假如我现在还有一小时就要起飞,我不大可能会在期间预订下一次出行的航班,我更可能是需要升舱服务或是食物。
通过对文本的利用,旅游移动应用将开始预测我的需求并采取行动,例如再次预订某班航班,或是改变来机场接送我的时间,或是我入住酒店的时间。(文章来自:CDA数据分析师培训官网)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07