
在大数据时代下,“大数据”已经成为出现频度最高的词语,大数据受到的关注越来越多,“大数据”基本上是一个包罗万象的术语,指的是收集和分析大量信息的能力,而这些信息涉及到人类生活的方方面面。过去数据分析可能需要昂贵的数据库和专业化的技术,近几年,与大数据概念有关的创业公司如雨后春笋般涌现出来,如果你愿意,完全有条件用低廉的成本使用大数据分析。
无论是来自一般商业领域,还是零售、医疗、气候等专门领域的大数据都可用来盈利,这种可能性让投资界重新兴奋起来。
笔者收集了几家成长迅猛,并已经获得风险投资的创业公司:
【Splunk】
美国商业智能软件提供商Splunk,创立于2004年,2012年在纳斯达克上市,成为首家上市的大数据公司。目前在12个国家拥有700多名员工,最早通过分析日志数据排除机器故障,现在其软件可用于监控、分析实时的机器数据以及TB级的历史数据。今天所有的网站、通信和复杂IT基础设施每时每刻都在生成大量数据流,Splunk的技术特别适合于实时数据分析,帮助用户需要及时地了解业务发展趋势。
【Tableau】
美国计算机软件公司Tableau创立于2003年,总部位于西雅图,Tableau软件的研发最早源于美国国防部的一个项目,当时为了提高人们分析信息的能力,国防部召集了斯担福大学计算机科学专业的人才,以及专门探索和分析数据库和多维数据集可视化技术研究的着名教授Pat Hanrahan和他的博士学生Chris Stolte,他们很快认识到计算机图形可以帮助人们提高理解信息的能力。Tableau开发的桌面系统中最简单的商业智能工具软件,适合企业和部门进行日常数据报表和数据可视化分析工作,它将数据运算与美观的图表完美地嫁接在一起。
从2003年成立,2010年Tableau营收达到3420万美元,2011年增长到6240万美元,2012年增长到1.28亿美元。
【Cloudera】
美国大数据软件公司Cloudera,由来自Facebook、谷歌和雅虎的前工程师、甲骨文前高管在2008年创建,短短的几年时间里,Cloudera已从一家默默无闻的创业公司,发展成为企业在应对数据挑战时不得不依赖的公司。
Cloudera 利用Hadoop 这一开源技术帮助公司搭建他们的大数据系统,Hadoop 可以利用一些价格低廉的硬件就完成大量的数据分析,所以非常受大小企业欢迎。
Cloudera利用流行的开源软件Hadoop,帮助诺基亚、高通和Groupon等公司储存和处理大数据。
【HortonWorks】
Hortonworks是一家Hadoop初创公司,2011年7月由雅虎与硅谷风投Benchmark Capital合资组建。创立之初仅有不到30名员工,大多来自雅虎专门研究Hadoop的元老级工程师,这个团队几年前开发了雅虎内部一个开源项目Hadoop。Hortonworks公司正努力让更多的人使用Hadoop,并大胆预测这项技术将在未来五年内处理世界上一半的数据。
作为又一家基于Hadoop框架提供大数据服务的创业公司,Hortonworks在短短两年多的时间里就成长起来,引起业界关注。
Hortonworks对公司的融资情况一直讳莫如深。但风投公司Benchmark Capital的普通合伙人彼得·芬顿(Peter Fenton)是该公司的投资者和公司董事会成员。
【MapR】
MapR公司是美国加州的圣何塞市的一个企业管理软件公司,主要专注于可用性和数据安全优化和开发、销售Apache Hadoop的衍生软件。MapR号称下一代Hadoop,使Hadoop变为一个速度更快、可靠性更高、更易于管理、使用更加方便的分布式计算服务和存储平台,同时性能也不断提高。MapR通过为Hadoop用户提供专业咨询服务来获取收入。
MapR目前大约一半的客户是传统的Web和基于云计算的公司,而另一半则是金融、电信和制造公司。
评论:
大数据为风险投资带来了新的市场契机,对于一些敏锐的风险投资者来说,他们最早看到未来的方向,从中发现商机,过去的几年只是一个开始,可以预见大数据行业未来十年仍然会是创业公司的机遇地,这对一些创业公司来说,无疑是一大利好消息。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29