京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在大数据时代下,“大数据”已经成为出现频度最高的词语,大数据受到的关注越来越多,“大数据”基本上是一个包罗万象的术语,指的是收集和分析大量信息的能力,而这些信息涉及到人类生活的方方面面。过去数据分析可能需要昂贵的数据库和专业化的技术,近几年,与大数据概念有关的创业公司如雨后春笋般涌现出来,如果你愿意,完全有条件用低廉的成本使用大数据分析。
无论是来自一般商业领域,还是零售、医疗、气候等专门领域的大数据都可用来盈利,这种可能性让投资界重新兴奋起来。
笔者收集了几家成长迅猛,并已经获得风险投资的创业公司:
【Splunk】
美国商业智能软件提供商Splunk,创立于2004年,2012年在纳斯达克上市,成为首家上市的大数据公司。目前在12个国家拥有700多名员工,最早通过分析日志数据排除机器故障,现在其软件可用于监控、分析实时的机器数据以及TB级的历史数据。今天所有的网站、通信和复杂IT基础设施每时每刻都在生成大量数据流,Splunk的技术特别适合于实时数据分析,帮助用户需要及时地了解业务发展趋势。
【Tableau】
美国计算机软件公司Tableau创立于2003年,总部位于西雅图,Tableau软件的研发最早源于美国国防部的一个项目,当时为了提高人们分析信息的能力,国防部召集了斯担福大学计算机科学专业的人才,以及专门探索和分析数据库和多维数据集可视化技术研究的着名教授Pat Hanrahan和他的博士学生Chris Stolte,他们很快认识到计算机图形可以帮助人们提高理解信息的能力。Tableau开发的桌面系统中最简单的商业智能工具软件,适合企业和部门进行日常数据报表和数据可视化分析工作,它将数据运算与美观的图表完美地嫁接在一起。
从2003年成立,2010年Tableau营收达到3420万美元,2011年增长到6240万美元,2012年增长到1.28亿美元。
【Cloudera】
美国大数据软件公司Cloudera,由来自Facebook、谷歌和雅虎的前工程师、甲骨文前高管在2008年创建,短短的几年时间里,Cloudera已从一家默默无闻的创业公司,发展成为企业在应对数据挑战时不得不依赖的公司。
Cloudera 利用Hadoop 这一开源技术帮助公司搭建他们的大数据系统,Hadoop 可以利用一些价格低廉的硬件就完成大量的数据分析,所以非常受大小企业欢迎。
Cloudera利用流行的开源软件Hadoop,帮助诺基亚、高通和Groupon等公司储存和处理大数据。
【HortonWorks】
Hortonworks是一家Hadoop初创公司,2011年7月由雅虎与硅谷风投Benchmark Capital合资组建。创立之初仅有不到30名员工,大多来自雅虎专门研究Hadoop的元老级工程师,这个团队几年前开发了雅虎内部一个开源项目Hadoop。Hortonworks公司正努力让更多的人使用Hadoop,并大胆预测这项技术将在未来五年内处理世界上一半的数据。
作为又一家基于Hadoop框架提供大数据服务的创业公司,Hortonworks在短短两年多的时间里就成长起来,引起业界关注。
Hortonworks对公司的融资情况一直讳莫如深。但风投公司Benchmark Capital的普通合伙人彼得·芬顿(Peter Fenton)是该公司的投资者和公司董事会成员。
【MapR】
MapR公司是美国加州的圣何塞市的一个企业管理软件公司,主要专注于可用性和数据安全优化和开发、销售Apache Hadoop的衍生软件。MapR号称下一代Hadoop,使Hadoop变为一个速度更快、可靠性更高、更易于管理、使用更加方便的分布式计算服务和存储平台,同时性能也不断提高。MapR通过为Hadoop用户提供专业咨询服务来获取收入。
MapR目前大约一半的客户是传统的Web和基于云计算的公司,而另一半则是金融、电信和制造公司。
评论:
大数据为风险投资带来了新的市场契机,对于一些敏锐的风险投资者来说,他们最早看到未来的方向,从中发现商机,过去的几年只是一个开始,可以预见大数据行业未来十年仍然会是创业公司的机遇地,这对一些创业公司来说,无疑是一大利好消息。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16