
关于大数据技术问题
当今,大数据的到来,已经成为现实生活中无法逃避的挑战。每当我们要做出决策的时候,大数据就无处不在。大数据术语广泛地出现也使得人们渐渐明白了它的重要性。大数据渐渐向人们展现了它为学术、工业和政府带来的巨大机遇。与此同时,大数据也向参与的各方提出了巨大的挑战,首先是三个重要的技术问题:
一、如何利用信息技术等手段处理非结构化和半结构化数据
大数据中,结构化数据只占 15%左右,其余的 85%都是非结构化的数据,它们大量存在于社交网络、互联网和电子商务等领域。另一方面,也许有 90%的数据来自开源数据,其余的被存储在数据库中。大数据的不确定性表现在高维、多变和强随机性等方面。股票交易数据流是不确定性大数据的一个典型例子。
大数据刺激了大量研究问题。非结构化和半结构化数据的个体表现、一般性特征和基本原理尚不清晰,这些都需要通过包括数学、经济学、社会学、计算机科学和管理科学在内的多学科交叉来研究和讨论。给定一种半结构化或非结构化数据,比如图像,如何把它转化成多维数据表、面向对象的数据模型或者直接基于图像的数据模型?值得注意的是,大数据每一种表示形式都仅呈现数据本身的侧面表现,并非全貌。
如果把通过数据挖掘提取 “粗糙知识” 的过程称为 “一次挖掘” 过程,那么将粗糙知识与被量化后主观知识,包括具体的经验、常识、本能、情境知识和用户偏好,相结合而产生 “智能知识” 过程就叫做 “二次挖掘”。从 “一次挖掘” 到 “二次挖掘” 类似事物 “量” 到 “质” 的飞跃。
由于大数据所具有的半结构化和非结构化特点,基于大数据的数据挖掘所产生的结构化的 “粗糙知识”(潜在模式)也伴有一些新的特征。这些结构化的粗糙知识可以被主观知识加工处理并转化,生成半结构化和非结构化的智能知识。寻求 “智能知识” 反映了大数据研究的核心价值。
二、如何探索大数据复杂性、不确定性特征描述的刻画方法及大数据的系统建模
这一问题的突破是实现大数据知识发现的前提和关键。从长远角度来看,依照大数据的个体复杂性和随机性所带来的挑战将促使大数据数学结构的形成,从而导致大数据统一理论的完备。从短期而言,学术界鼓励发展一种一般性的结构化数据和半结构化、非结构化数据之间的转化原则,以支持大数据的交叉工业应用。管理科学,尤其是基于最优化的理论将在发展大数据知识发现的一般性方法和规律性中发挥重要的作用。
大数据的复杂形式导致许多对 “粗糙知识” 的度量和评估相关的研究问题。已知的最优化、数据包络分析、期望理论、管理科学中的效用理论可以被应用到研究如何将主观知识融合到数据挖掘产生的粗糙知识的 “二次挖掘” 过程中。这里人机交互将起到至关重要的作用。
三、数据异构性与决策异构性的关系对大数据知识发现与管理决策的影响
由于大数据本身的复杂性,这一问题无疑是一个重要的科研课题,对传统的数据挖掘理论和技术提出了新的挑战。在大数据环境下,管理决策面临着两个 “异构性” 问题:“数据异构性” 和 “决策异构性”。传统的管理决定模式取决于对业务知识的学习和日益积累的实践经验,而管理决策又是以数据分析为基础的。
大数据已经改变了传统的管理决策结构的模式。研究大数据对管理决策结构的影响会成为一个公开的科研问题。除此之外,决策结构的变化要求人们去探讨如何为支持更高层次的决策而去做 “二次挖掘”。无论大数据带来了哪种数据异构性,大数据中的 “粗糙知识” 仍可被看作 “一次挖掘” 的范畴。通过寻找 “二次挖掘” 产生的 “智能知识” 来作为数据异构性和决策异构性之间的桥梁是十分必要的。探索大数据环境下决策结构是如何被改变的,相当于研究如何将决策者的主观知识参与到决策的过程中。
大数据是一种具有隐藏法则的人造自然,寻找大数据的科学模式将带来对研究大数据之美的一般性方法的探究,尽管这样的探索十分困难,但是如果我们找到了将非结构化、半结构化数据转化成结构化数据的方法,已知的数据挖掘方法将成为大数据挖掘的工具。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23