
大数据何以成为“主义”
数据者,有广义与狭义之分。狭义的数据,就是数字或数值,如1、2、3、4、5⋯⋯;广义的数据,则可概括为人类观察、实验、计算等的记录。
作为这些记录的符号,或数字,或文字,或图像,或音视频,从上古时代的结绳记事、楔形文字、甲骨文,到古代乃至现代以竹简、布帛、羊皮、纸张等为载体的图文,直至现在以比特为单位的电子信息,可谓无所不包。
也许,正是由于互联网技术工程师们习惯于把以电子信息方式存在的内容统称为“数据”,于是,“数据”一词便由狭义的“数字”或“数值”演变为主要指向通用的广义“数据”。
随着计算机、互联网、现代通信以及相关软硬件技术的飞速发展,大数据和云计算,如同一枚硬币不可分离的两面,成为我们这个时代的高频词。
大数据之大,不仅大在巨量或海量——由人们熟知的千字节(KB)、兆(MB)、千兆(GB)和太字节(TB),跃升为专业人士才了解的拍字节 (PB)、艾字节(EB)、泽字节(ZB),乃至尧字节(YB)。 (1KB=1024B,1MB=1024KB,1GB=1024MB,1TB=1024GB,1PB=1024TB,1EB=1024PB,1ZB=1024EB,1YB=1024ZB)。
其中,不变的是基本单位B,即比特或字节,而从K到Y,则是成千倍的递增,以致有人据此宣称,目前的数据计算已经进入“PB时代”。
大数据之大,还大在数据结构的有容乃大——它不再需要传统的数据库表格来整齐排列,几乎可以无所不包地记录、存储和计算各种规则的结构化数据和不规则的非结构化数据,于是,便有了逐步演变为一个数字化世界的可能。
如此庞大和复杂的数据,远远超出传统计算机的处理能力,于是,建立在互联网基础上的云计算技术应运而生,承担起存储、传输、计算和应用大数据的重任。而正是大数据与云计算的有效互动,打开了世界观、方法论乃至价值观的新视野。
在本书中,作者引用专业研究机构的统计,揭示了大数据的规模与速度:一方面,到2014年,全世界电子化数据已增至4.4ZB,即4.4亿万亿 字节,如果将如此之巨的信息量存入只有7.5毫米厚的苹果平板电脑,后者叠加起来的厚度可达地球与月球间距离的2/3;另一方面,有史以来90%的数据 量,都是在过去两年的时间里产生的。
由此不难预期,一个电子化的、独立于物质世界的“数字世界”,正在大数据和云计算的互动中迅速构建,它虽然不可能穷尽物质世界全部存在,越来越逼近物质世界本体却是不争的事实。
尤为值得注意的是,许许多多以往被闲置的数据,由于一些精明商家的开发和利用,开始“变废为宝”。一个耳熟能详的案例,就是那个“尿片+啤酒” 的商业发现与行动。世界最大零售商沃尔玛通过大数据统计和分析发现,男性顾客在购买婴儿尿片时,常常会顺便买上几瓶啤酒,于是推出将啤酒和尿片捆绑销售的 促销方式,从而有效地提高了啤酒销量。
凡此种种表明,如同宇宙大爆炸般飞速扩张的“数字世界”,不仅日益成为外在的客观物质世界的“镜像”,而且正在越来越多地包含对人类自身行为的追踪和记录,成为人类观察和认识自我的“镜子”。
二者的叠加,形成一个有趣的悖论:由大数据构筑而成的数字世界,在日趋脱离客观物质世界的同时,又越来越接近世界的本原。因此,人们在解码这样一个虚拟世界的同时,也在一定程度上改变着对世界的看法。
然而,就在哲学家们对数字世界的属性还没有来得及给出明确界定之际,为利益所驱动的商家们却迫不及待地启动了对这一新矿藏的发掘。
它们是如此急切:还没来得及弄清两个相关现象之间的互动机理或因果关系,便急匆匆地将其中的商机转化为提升经济效益的手段;云计算技术刚刚出现,便迅速地将统计分析对象由随机采样拓展为可获取的全部数据;为寻求“大数据的高效率”,不惜置“小数据的精确度”于不顾⋯⋯
回过头来看,正是这近乎“饥不择食”的匆忙,竟在无意中成就了认识数字世界的锁钥:不再执着于因果关联,不再满足于抽样分析,不再一味地追求精 确度的提高,转而直面模糊与混杂,关注看似不相关的相关现象。这一系列有别于以往的方法,为人类认识世界、解决问题提供了传统工具箱中没有的新工具。
诚如史蒂夫.洛尔在本书中的比喻,这些大数据时代的新工具,犹如“望远镜”和“显微镜”。“望远镜”让人们看得更远,发现新的星系;“显微镜”则将比细胞更加微小的世界展示在人们面前,人们据此看到并计量之前一无所知的事物。
抛开学术和技术层面的研讨,大数据及其应用几乎与生俱来就伴随了喋喋不休的争论。
其中有两个关键词,一是“开放”,一是“保护”。如果说开放就是要打破垄断分割,推动信息与数据互联互通;变革体制机制,实现数据资源共有共 享;鼓励技术创新,促进大数据资源开发利用⋯⋯最大限度地拓展数字世界“公共空间”,让大数据和云计算普惠大众,造福人类;那么保护则意味着要在数字世界 为个人留下一方“私密领地”,或者为公权力画上一道不能逾越的“红线”——“风可进,雨可进,国王不能进”。
开放与保护,“公共空间”与“私密领地”,在这里构成既对立又统一的关系。对立在开放与保护“井水不犯河水”,统一在“公共空间”与“私密领地”共存于同一个数字世界,且双方都以对方的存在为自身存在的证据,正所谓没有“公”即没有“私”,没有“私”亦没有“公”。
一言以蔽之,数字世界与现实世界理应奉行同样的价值理念:该开放的一定要最大限度开放,该保护的必须严格加以保护。
本书向读者展示了这样一幅图景:不管你自觉还是不自觉,乐意还是不乐意,大数据正以空前的速度和规模渗透到人类社会生活的方方面面,它在一定程 度上已经和正在改变人们观察、认识、思考乃至生存与发展的方式。特别是这后一方面的变化,或许就是“大数据”之所以成为“主义”的原因。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29