大数据产品到底应该是什么形态
大数据很时髦,但企业如何操作,如何落地,才是真正要面对的,好在现在我们看到很多朋友开始思考这样的实操性问题,本文将从大数据产品形态角度帮助我们理清一些概念。
嗨,朋友,看到这个标题请先别主观排斥,跟你一样,我也反感动辄乱谈大数据,为了后续的沟通愉快,先做下这里的“大数据“指向,特指符合4V特点的大数据,即:
1,数据体量巨大;
2,数据类型繁多;
3,价值密度低;
4,处理速度快。
所以,本文的“大数据”既不是有些人口中的海量数据,也不是非结构化数据,更不是什么相关与因果,这里不谈什么是大数据,只谈谈大数据的产品形态与商业逻辑,抛砖引玉,期待交流。
一、大数据的产品特性
顾名思义,“大数据产品”应该是基于大数据而设计出的产品,那么理应符合大数据的特点,毕竟基因在那,那么回顾下大数据与(传统)数据有哪些具体区别。
(传统)数据是通过问卷调查收集数据,或者是已存储的历史经营数据,比如财务数据、销售数据这些,至于数据量级,可能就是一台server的存储级别。
而大数据是海量,这个海量并不是某个时间断点的量级总结,而是持续有更新,持续有增量,那么就决定了可以”制造”出大数据产品的应该不是传统企业,而是类似电信、银行、微博这样的平台级机构,或者依附于平台级企业的第三方机构,亦或者是更宏观层面的政府管理机构。
这些机构拥有大量用户,可以源源不断的产生UGC数据,因此存储和计算成本必然会随之上涨,也就决定了大数据产品的甲乙方级别,屌丝可能会被无情的淘汰出局。这些数据不仅仅是数值型的结构化数据,还包括文本内容、图片、音视频等非结构化数据。
在处理速度上,(传统)数据使用excel或者spss,前期有严谨的方法论,后期有完善的分析处理过程,从数据的收集到最后报表/报告的产出,这个周期可能在至少一周以上,而大数据因为有了hadoop/storm等IT技术的支持,在处理速度上可以保证在小时级延迟,甚至更快。
这里需要补充一点的是,大数据产品是否要快速计算?个人觉得应该是,这里的快速是相对快,不一定非要实时,毕竟在收集、存储、计算上花了更多的成本,策略如果不及时发现,也对不起那些集群啊。
那么是否说大数据就一定比(传统)数据好了?不一定,引用祝建华老师《文科教授眼中的大数据》里的一段话,“理论上讲大数据指的应该就是总体数据。但实际上,由于技术、商业、保密和其它原因,除了少数大数据的原始拥有者,对于绝大多数的第三方来讲,现在大家讲的大数据,基本上都不是总体数据而是局部数据。注意,这种局部数据,哪怕占了总体的很大一个百分比(70%、80%),既不是总体数据、也不是抽样数据。因为哪怕是缺了10%、20%的个案,局部数据跟总体也许就有很大的差别。”
所以在总体代表性上,(传统)数据可以较好的代表整体,而大数据可能会出现偏差。但是,这个偏差并不影响大数据产品的商业应用,举个例子,微博上每天都有各种口碑和舆情,如果涉及某个企业的负面舆情突然趋势走高,即使在不能代表总体的情况下,你能认为这个态势不值得警惕么?当然是不能。并且,大数据产品对使用者的要求更高了,不光关注活跃的数据,还得关注沉默的数据。
由此,大数据产品所具备的特性应当是:
1、数据量级更多;
2、数据处理速度更快;
3、数据类型多样;
4、使用者要求更高。
那么,大数据产品究竟长啥样?
二、大数据的产品形态
先说一个亲身经历,在家收看好声音导师考核的汪峰场,之前一直很期待这场,毕竟汪峰的风格理念偏重社会观察,偏重人文洞察,但看到快一半的时候,却发现很乏味,想换台,没有那英那场更黏我,如果说看上一场脸部肌肉是松弛的话,那这一场则是紧绷的,”上苍、思念、回忆、故人、泪水….”当这些碎片词语不断的充斥在我的耳边时,真的不觉得这是一个娱乐节目,一个比一个悲凉,我的诉求很简单,像看周星驰无厘头电影一样,开心一下足矣,哪怕没有任何的教育意义。
随后我发了一条微博吐糟,引来众多附议。我想这应该是不少受众当时的心态,但不代表对汪峰场的整体评价。那么,试想一下,如果你是好声音的竞争对手,在此刻很实时的洞察到了用户的心情反馈,再通过合适的路径传递出营销信息,受众是否会换台?答案是未知的,但想象空间是巨大的。
这个场景很恰如其分的给我们描绘出了大数据的产品形态。首先他需要在平台级机构(微博)上监控海量数据(微博内容),这些数据是非结构化的,通过实时计算获得洞察(拥有不满情绪的是少量群体还是大量群体,是真实声音还是噪音污染),并快速应用(推送营销信息)。
这样的例子还有很多,特别是在营销环境里,受众的情绪不是线性稳定的,可能十分钟前还是心情愉悦的,而十分钟后,则是心情紧张的,不利于接受你的品牌信息并形成记忆,这些情绪的变化是随机动态的,因环境的变化而随之变化。还有哪些属于大数据产品呢,仅以我所了解的互联网领域为例,DSP、RTB、推荐系统,另外就是宏观的情报系统了,比如联合国的全球脉动项目。
三、总结
综上所述,大数据的产品形态应该是,运行在平台级机构之上,通过对持续性海量增加的多结构类型数据,进行快速计算产生策略,结合使用者的经验认知及时应用,进而产生价值形成商业闭环,一切不以此为特性的大数据产品都是耍流氓!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03