京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代数据安全策略
大数据未来已来 商业价值巨大
众所周知,今天的数据量正在呈几何式增长,以个人消费者为例,现在我们每个人每天都会产生大量的数据比如上网数据、购物数据、社交数据。而在企业市场,数据量更是惊人, 移动设备、互联网以及企业自身的数据加速了大数据到来 。阿里的马云曾经说过,我们现在正在处于一个由IT时代向DT时代转变。实际上,这不是在耸人听闻,小到我们个人消费者大到行业企业的发展,处处在产生数据、又处处离不开数据,基于大数据技术,无论是个人还是行业企业可以去很多的业务创新以及价值转换,事实上,大数据的价值已经不言而喻。梭子鱼中国华南区高级技术经理范宏伟认为,大数据在行业发展的前景非常广阔,不论是传统的金融机构还是现在时髦的互联网金融机构,通过大数据技术能够分析每个人的特征,根据所形成的特征进行汇总,能够助力金融机构实现对于贷款人的评判。
在政府和房地产行业,未来随着数据的开放,通过大数据技术查询房产不需要在回到原省区查询,直接在所在当地就可以查询。
对于企业的内部管理而言,通过大数据技术可以分析出营销存在的问题,然后根据问题,不断的优化、解决,从而使整体的团队营销水平最终得到有效的提升。
今天的大数据对于企业而言是非常有价值的,经过多年的大数据的发展,范宏伟认为,大数据现在呈现以下几大特点:
第一,规模越来越大。在过去十几年前,几百GB的数据量已经非常巨大,但现在都已经是TB、PB级的,从这方面来看,数据规模越来越大;
第二,数据类型非常多,过去只有单一的数据,现在越来越多非结构化数据如音频、视频、社交数据等对数据处理能力提出更高要求;
第三,数据处理速度快,对数据实时处理有着极高的要求,通过传统数据库查询方式得到的 “当前结果”很可能已经没有价值。
第四,数据价值高。海量数据带来了巨大的商业价值。数据之间关联性支持深层的数据挖掘。
大数据 安全不容小觑
虽然我们一再强调大数据的特点以及在行业中的价值,也传递了它的正向作用,但是任何事务都是双向的,既然大数据有正向作用,那么它也有反向作用暨开展大数据也是存在挑战的,而安全成为企业开展在大数据不容小觑的“门槛”。
还是以金融为例,通常金融的数据信息是最“齐全”的,对于黑客而言,通常会进行多个点的“攻击”,一旦攻开一个点,它就可以“拿”到整个数据,这对金融机构特别可怕,特别是互联网金融如P2P的兴起,由于技术薄弱以及众多的后台接口,导致每天被都会被攻击,而且在互联网环境下黑客的成本在降低,这就导致了在大数据时代企业存在安全风险。
范宏伟表示,在大数据时代,黑客对于企业的攻击点是无形中增加的,它已经不在局限于企业自身的攻击,而是通过“外围”的方式深入到企业内部比如美国某知名电商网站受到攻击后发现原来黑客是从该网站的供应商系统中切入到,从而获得了数据。因此,对于企业而言,企业的数据安全风险的,这也是企业的CIO、IT管理者在企业发展中需要思考的问题。
大数据时代数据安全策略
现在我们可以看到,在整个IT系统中,数据已经成为IT很重要的资产,那么,数据作为企业中很重要的数据,我们怎么保护数据?如何做到有效的容灾?而且大数据存在安全风险,那么作为企业的CIO、IT管理者而言又该如何来应对?
对于此,范宏伟认为,CIO开展借助大数据安全,首先要做好大数据的安全策略:
第一,规范建设。不论上新应用信息系统还是过去旧的系统,都需要有规范化的管理,在大数据时代如果没有规范,它所面临的就是数据丢失。
第二,建立以数据为中心的安全系统。
第三,融合创新。
实际在这三点对于每个行业企业在开展大数据安全管理时,都具有重要的参考价值。对于企业的CIO而言,企业的核心数据如ERP系统首先可通过预判来进行防范,实现安全预警。比如平常员工很少晚上登陆ERP系统帐号,如果晚上登陆ERP系统,就可以判断是疑似的预判,从而做出相应的应对措施。
对于企业的核心数据保护需要考虑以下五个方面的因素:
第一,灾难的类型。会有哪些灾难以及会对系统到来多大损失?当机器出现故意后,对于企业有多大影响比如ERP系统机器损坏以后会影响到企业的生存发展;
第二、恢复时间:灾难发生后需要多久恢复?
第三,实用技术。目前有哪些可靠的技术,可以保护数据安全
第四、成本的问题。实施容灾方案的成本以及不实施容灾灾难发生后的损失成本?
第五、恢复程度;系统恢复还是数据恢复?恢复数据的最后更新时间?
范宏伟进一步指出,在有限的成本中,把数据保护实现最大化,则需要CIO要在实施成本、宕机时间、解决方案达成一个平衡。因此,开展数据保护或者对于整体数据容灾系统应该从底层的数据备份恢复开始做起,逐步开始数据复制、应用切换、业务接管等四个方向。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22