
大数据时代数据安全策略
大数据未来已来 商业价值巨大
众所周知,今天的数据量正在呈几何式增长,以个人消费者为例,现在我们每个人每天都会产生大量的数据比如上网数据、购物数据、社交数据。而在企业市场,数据量更是惊人, 移动设备、互联网以及企业自身的数据加速了大数据到来 。阿里的马云曾经说过,我们现在正在处于一个由IT时代向DT时代转变。实际上,这不是在耸人听闻,小到我们个人消费者大到行业企业的发展,处处在产生数据、又处处离不开数据,基于大数据技术,无论是个人还是行业企业可以去很多的业务创新以及价值转换,事实上,大数据的价值已经不言而喻。梭子鱼中国华南区高级技术经理范宏伟认为,大数据在行业发展的前景非常广阔,不论是传统的金融机构还是现在时髦的互联网金融机构,通过大数据技术能够分析每个人的特征,根据所形成的特征进行汇总,能够助力金融机构实现对于贷款人的评判。
在政府和房地产行业,未来随着数据的开放,通过大数据技术查询房产不需要在回到原省区查询,直接在所在当地就可以查询。
对于企业的内部管理而言,通过大数据技术可以分析出营销存在的问题,然后根据问题,不断的优化、解决,从而使整体的团队营销水平最终得到有效的提升。
今天的大数据对于企业而言是非常有价值的,经过多年的大数据的发展,范宏伟认为,大数据现在呈现以下几大特点:
第一,规模越来越大。在过去十几年前,几百GB的数据量已经非常巨大,但现在都已经是TB、PB级的,从这方面来看,数据规模越来越大;
第二,数据类型非常多,过去只有单一的数据,现在越来越多非结构化数据如音频、视频、社交数据等对数据处理能力提出更高要求;
第三,数据处理速度快,对数据实时处理有着极高的要求,通过传统数据库查询方式得到的 “当前结果”很可能已经没有价值。
第四,数据价值高。海量数据带来了巨大的商业价值。数据之间关联性支持深层的数据挖掘。
大数据 安全不容小觑
虽然我们一再强调大数据的特点以及在行业中的价值,也传递了它的正向作用,但是任何事务都是双向的,既然大数据有正向作用,那么它也有反向作用暨开展大数据也是存在挑战的,而安全成为企业开展在大数据不容小觑的“门槛”。
还是以金融为例,通常金融的数据信息是最“齐全”的,对于黑客而言,通常会进行多个点的“攻击”,一旦攻开一个点,它就可以“拿”到整个数据,这对金融机构特别可怕,特别是互联网金融如P2P的兴起,由于技术薄弱以及众多的后台接口,导致每天被都会被攻击,而且在互联网环境下黑客的成本在降低,这就导致了在大数据时代企业存在安全风险。
范宏伟表示,在大数据时代,黑客对于企业的攻击点是无形中增加的,它已经不在局限于企业自身的攻击,而是通过“外围”的方式深入到企业内部比如美国某知名电商网站受到攻击后发现原来黑客是从该网站的供应商系统中切入到,从而获得了数据。因此,对于企业而言,企业的数据安全风险的,这也是企业的CIO、IT管理者在企业发展中需要思考的问题。
大数据时代数据安全策略
现在我们可以看到,在整个IT系统中,数据已经成为IT很重要的资产,那么,数据作为企业中很重要的数据,我们怎么保护数据?如何做到有效的容灾?而且大数据存在安全风险,那么作为企业的CIO、IT管理者而言又该如何来应对?
对于此,范宏伟认为,CIO开展借助大数据安全,首先要做好大数据的安全策略:
第一,规范建设。不论上新应用信息系统还是过去旧的系统,都需要有规范化的管理,在大数据时代如果没有规范,它所面临的就是数据丢失。
第二,建立以数据为中心的安全系统。
第三,融合创新。
实际在这三点对于每个行业企业在开展大数据安全管理时,都具有重要的参考价值。对于企业的CIO而言,企业的核心数据如ERP系统首先可通过预判来进行防范,实现安全预警。比如平常员工很少晚上登陆ERP系统帐号,如果晚上登陆ERP系统,就可以判断是疑似的预判,从而做出相应的应对措施。
对于企业的核心数据保护需要考虑以下五个方面的因素:
第一,灾难的类型。会有哪些灾难以及会对系统到来多大损失?当机器出现故意后,对于企业有多大影响比如ERP系统机器损坏以后会影响到企业的生存发展;
第二、恢复时间:灾难发生后需要多久恢复?
第三,实用技术。目前有哪些可靠的技术,可以保护数据安全
第四、成本的问题。实施容灾方案的成本以及不实施容灾灾难发生后的损失成本?
第五、恢复程度;系统恢复还是数据恢复?恢复数据的最后更新时间?
范宏伟进一步指出,在有限的成本中,把数据保护实现最大化,则需要CIO要在实施成本、宕机时间、解决方案达成一个平衡。因此,开展数据保护或者对于整体数据容灾系统应该从底层的数据备份恢复开始做起,逐步开始数据复制、应用切换、业务接管等四个方向。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23