
大数据时代:发现问题并提出建设性建议
在当前的大数据时代下,尽管大数据在技术层面的应用可以无限广阔,但由于合理利用规则的缺失,能够用于商业应用、服务于公众的数据将远远小于理论上大数据能够采集和处理的数据,长远来看,将不利于大数据产业的形成与发展
在大数据时代,只要能产生价值的信息,都可以被加以开发与利用。特别在智慧城市建设中,只有不断盘活已有数据存量,充分利用大数据增量,才能提升智慧城市“大脑”的智慧水平,促使城市管理从“经验管理”转向“科学管理”。
然而在大数据的应用过程中,政府和企业对大数据的运用还存在着法律上的诸多难点,需要站在制度设计的层面统筹考虑,既要保护用户隐私和个人信息安全,同时最大程度上挖掘出信息本身的价值。
正如美国作家帕特里克·塔克尔在其作品《赤裸裸的未来》 一书中所述:“我们不可能朝未来技术挥舞拳头,更好的办法是,了解这些工具是如何运作的,了解它们可以如何合法地利用……同时,也要了解这些工具可能如何被滥用。”
发现问题
随着大数据应用的逐步开展和试行,如何用好大数据,保障个人信息安全,已经成为智慧城市推进的一个重要课题。
首先,数据隐私的保护和应用之间需要权衡。目前我国还缺乏合理开放利用用户数据的管理规范。《电信和互联网用户个人信息保护规定》 等均明确了用户信息保护及合理利用的原则,但是具体到数据开发利用的规则,比如对商业规则如何制定、经营者合理开发利用的法定情形如何确定、触犯用户的隐私权应当如何惩治等一系列管理问题,则没有相关规定。尽管大数据在技术层面的应用可以无限广阔,但由于合理利用规则的缺失,能够用于商业应用、服务于公众的数据将远远小于理论上能够采集和处理的数据,长远来看,将不利于大数据产业的形成与发展。
其次,数据的信息安全问题有待妥善解决。大数据应用必然会带来用户数据的使用和共享,多维的数据交互将意味着更大的信息泄露风险。一旦经营者保护用户信息不力或者遭遇信息窃取,势必引起用户恐慌,对智慧城市应用涉及的公民财产安全、国家安全产生重大威胁。
由于目前对大数据使用的法律缺位,政府、企业及个人作为使用或者提供大数据的主体,目前还没有明确的法律责任定位,对于用户信息问题产生的相关法律责任亦没有相关的罚则体系。
建设性建议
所以,我国应该结合中外个人信息保护立法经验,开展关于大数据的法律研究。通过法律实践,推进大数据应用规则的探索,根据法律研究的相关成果,制定具有可行性的大数据法律实施方案,通过相关法规或者规范的逐步实施,不断总结实践推进大数据的法律探索工作。比如开展对用户信息进行分层分级的试行,依据信息的识别度和重要性,逐步建立信息分级制度;试行用户信息的模糊化去特征化处理等,逐步明确模糊化处理数据的可应用范围等。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08