京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Shankar:大数据分析项目成功的五项基本原则
大数据市场目前的焦点问题是:从社交网络、APP和市场调查等多种数据源收集海量数据容易,但真正产生商业价值的大数据分析项目的实施依然很难。
根据Cloudera提出的大数据三大应用模式Transform、ActiveArchive和Exploration,大数据分析目前大多处于前两个模式,只有少数企业真正能够进入大数据分析的实质性阶段。
近日,数据挖掘分析专家Shankar根据17年的商业分析经验(服务过的客户包括HomeDepot、BestBuy、可口可乐、宝洁等),提出了成功实施大数据业务分析项目的五项基本原则。
一、定义范围。
每家企业都面临业务增长和降低成本挑战,领导层需要清楚哪些是紧迫问题,然后IT专家能够聚焦在几个关键领域,通过数据分析查找问题根源,例如某条产品线的销售业绩为何下滑。一旦敲定数据分析的问题对象,就可以为数据分析项目制定量化的业务目标,例如未来6-12个月将客户投诉降低2%,利润提高3%或者返券率降低5%等。
二、找到合适的推手。
大数据分析项目需要一个同时能跟企业高管和技术管理者进行有效沟通,又能够在多个业务部门之间协调的善于沟通的项目领导者或者说推手,能够在控制和沟通分析成果方面扮演重要角色。目前按大多数企业都迫切需要这样的分析带头人。
三、不要做完美主义者。
不要等数据仓库一切完美后才开始数据分析。快速启动,先做一些概念验证类的仙姑,在3-6个月内评估初始结果,很多企业都认为只有“万数俱备”才可开始数据分析,这是不对的。在正确的道路上尝试学习并应用小的概念比数据仓库就绪前的瞎猜要更好。
四、平衡速度与准确性。
很多公司过去十年花费大量财力人力建设数据仓库却未看到任何收益。要知道,一个大型数据仓库项目往往需要一年后才能生成用户可用的报告。这期间,企业完全可以手机另外十亿个数据点,应对新的业务挑战。我的建议是针对特定的业务领域手机原始数据并进行分析。把数据分析周期从数月缩短到数周。
五、数据可视化是关键。
通常意味分析师会在一个项目上花两个多月的时间,最后将统计结果制作成长达数百页的PPT。请停止这么做!优秀的数据可视化图表可以“一图抵万页PPT”。类似Price活AttritionAlerts这样的可操作可视化工具可以让销售团队更好地抓住客户。关键点:将成堆的数据简化成几张飘来能干的数据图表即是科学也是艺术。数据可视化需要明确给出短期内的行动建议,这样才能产生最大的商业价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20