
校园大数据告诉你!学霸是如何炼成的
近日,国内大数据领域领军专家、电子科技大学周涛教授与有着近十年学工部长教育经验的吕红胤研究员,花费了近大半年的时间,联合研发出一套“大数据”系统——“学生画像”。
该系统利用校园一卡通追踪学生行为轨迹,通过对学生吃饭、打水、出行、消费行为记录,“算”出每名学生的学习、生活状态。更厉害的是,通过对学生日常学习状态的追踪,该系统还会对学生的期末成绩乃至大学四年后的就业情况作出预警~
注:系统用排名均值来计量学生成绩的优异。排名均值=学生在所在专业的年级排名/本专业的总人数,排名均值越接近0,代表该学生的成绩越好。
学霸是如何炼成的?
学霸出门时间通常比较固定
研究人员分析了近半年的宿舍门禁、吃饭、进出图书馆等刷卡记录,发现成绩较好的学生作息时间比成绩差的更规律。
例如,某专业排名第3的小雪,几乎每天固定在8点、12点、14点三个时间点出门,留在宿舍的总时长低于专业平均水平。而该专业成绩排名第61的小石每天进出宿舍的时间很随机,而且通常每次外出的时长不超过2小时,“宅指数”明显高于专业平均水平。
此外,研究人员还发现,9点前出现在食堂吃早餐的同学,成绩也相对更好。
学霸最爱在晚上10-11点洗澡
上图中,横轴代表了时间点,竖轴则代表了在当前的时间点下,学生的洗澡概率。电子科大的澡堂是全天开放的,但研究团队发现,晚上10——11点,学习好的学生与学习差的学生洗澡概率出现了较大的差异。简言之,集中在晚上10到11点之间洗澡的学生成绩更优异。
不管是出门时间还是洗澡时间,抑或是相对固定的早餐时间,都是学生作息规律的具体体现。研究人员发现,较有规律的学生群体,除了成绩上的优势外,考研成功率以及出国留学获得奖学金的概率均高于一般学生。这也从侧面印证了生活的规律性对于成绩有正面影响的结论。
学霸爱泡图书馆和自习室
在样本量足够庞大的情况下,学生在一定时期内的行为追踪确实可以反映他的学习和生活状态。比如,如果一个学生的打卡记录显示,他长期在教学楼的饮水机上打水,那一定程度上就说明了,教学楼是他的长期活动地点。
“学生画像”的研究团队,通过大数据分析,发现了出入图书馆次数多少与学习成绩的好坏存在着一定的相关性,即:出入图书馆次数比较多的学生,成绩要优于出入图书馆次数比较少的学生。同一个学生,随着他出入图书馆次数的增多或减少,他的成绩排名在上下浮动。如图↓↓
这样的相关性,同样适用于学校的教学楼↓↓(注:在教室打水代表该学生出现在了教学楼~)
现实中,每个人都会受到种种环境的影响。无疑,处于校园之中,身边人的学习状态,自然也会影响到学生自身的成绩好坏。
研究团队发现,如果一个大学生,他身边的朋友成绩比较好,那他自身的成绩也相对较好!
想要成为一枚学霸?先找个学霸好友吧~
期末会不会挂科?算一下吧
在这项研究中,研究团队专门设计出了一系列辅助学生更好完成大学学业的功能模块——“挂科预警”。
想知道你学期末会不会挂科?那就算一算喽!
挂科率=努力程度 + 学习基础;
努力程度依据:教学楼打水频率+进出图书馆的时间与次数;
学习基础:用已考科目成绩、已考与将考科目之间的关联性算出;
一旦你的挂科率触碰到了预警红线,那系统便会自动为负责你学习的辅导员推送预警信息!
“前方高能预警,您的挂科率有偏高趋势,请好好学习~”自从有了“挂科预警”系统,妈妈再也不用担心我挂科了~
四年后,你会成为失业大军中的一员吗?
如今,就业形势一年比一年紧张。作为学生,你在担心毕业即失业?作为高校的管理者,你会困惑于如何帮助学生突破重围吗?嗯,好消息来了!
“学生画像”研究团队通过大量的数据分析,研究得出了一个学生的毕业去向与他在校期间的生活规律有着一定的关联性。
电子科技大学教育大数据研究所副所长、原微软亚洲研究院的连德富教授在接受中国青年报(ID:zqbcyol)采访时表示,通过对比往届毕业生的毕业去向,他们发现,就业困难学生群体身上确实存在某些相似的行为特征。比如,与其他同学相比,就业困难学生在校期间的生活普遍不太规律。此外,就业困难学生在图书馆的借阅书目也更偏向于悬疑科幻小说以及与游戏相关的书籍。
近年来,越来越多的大学生毕业后选择创业。麦可思研究院研究发现,包括本科毕业生和高职专院校毕业生在内的中国大学生毕业后选择自主创业的比例基本呈逐年上升的趋势:2007年1.2%,2008年1%,2009年1.2%,2010年1.5%,2011年1.6%,2012年2%,2013年2.3%,2014年2.9%。
在连德富教授看来,大学里的创业一族也有“大数据”特点。偏好创业的学生跑市区的频率要高于普通学生。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23