
大数据是如何融入并改变我们的生活
随着互联网以及各种智能设备的发展,人们的行为、位置、生理特征等等,无时无刻不在生成数据被这些设备所采集,然后通过网络源源不断的传输,在计算机上将有型的数据转化为无形的财富,融入人们的生活每个角落。
曾经有这样一个事情,美国明尼苏达地区有一男子向一家零售商店的店长投诉,称该公司最近给他十几岁的女儿邮寄婴儿服装和孕妇服装的优惠券。店长大方的向他道了歉。后来这个女孩的确怀孕了。可见大数据的无所不在,这家商店通过分析女儿购买无味湿纸巾和补镁药品的记录就猜到了。
有人把大数据形容为未来世界的石油,有人宣称掌握大数据的人可以像上帝一样俯瞰整个世界,美国政府甚至已经把对大数据的研究上升为国家战略。衣、食、住、行,大数据都能派上用场。大数据海量、多变、多样,与传统数据不可同日而语。
百货行业精准的广告投放
对零售业来说,大数据来自于消费者在数字世界的痕迹——网购记录、社交网络的行踪的集合,它们为理解消费者的行为提供了依据。比如,在网上买了一些衣服,在之后的一段时间,网页两侧的广告栏里不断出现与购买的衣服类似的服装的广告。
美国的百货店Kohl’s,曾贴出告示,让消费者进入商店后用手机搜索Kohl’s的折扣信息。当我溜达到某个柜台时,一张刚才搜索过但没买的商品的折扣券就会发到我的手机上。这当然会让商店卖出商品的几率增加,因为消费者在消费现场更容易被促销广告打动;据统计,70%的人会更乐于在这时收到折价券。这样既不会对消费者造成困扰,又可以使销售量上升。
食品行业个性化的定制
大数据在食品行业的应用悄然兴起。于是Co.Design版块的可视化数据设计师格斯·文茨瑞克(Gus Wezerek)和作家马克·威尔逊(Mark Wilson)与一家食品业资讯公司Food Genius一起合作,研究了8万8千份菜单和5千9百万个菜品制作出了这份美国各州最有特色的食品图表。
图表显示出每个州最有特色、独一无二的菜品。图表中还体现出了各地区5大类特别的饮食爱好。Food Genius还可以告诉餐馆什么样的描述最吸引客人,可以提升价格。什么样的配料组合可以最大化利润
大数据寻找人们最爱的房屋
谷歌住房搜索查询量变化可对住房市场发展趋势进行预测,得益于大数据分析的成功运用。前些年,有机构根据搜索量,对于不同地区的美国人喜欢的房屋进行了统计,调查中也出现了一些让人意想不到的结果。
比如康涅狄格州滑雪度假屋的搜索超过了科罗拉多等州,佛罗里达“顶层公寓”的搜索量也高于纽约。这些数据可以帮助房屋中介和地产商们知道人们更愿意住什么样的房屋,便可以投其所好的推荐和建造。
大数据带来出行新体验
对于汽车巨头福特公司,大数据则是在图纸设计出来之前就发挥了作用。新产品开发团队想知道新款休旅车的后门应该做成手动打开还是还是脚踏电动后门。用传统方式调查,结果不明朗。于是福特团队从社交网络上搜集大量信息后发现,人们都喜欢电动后门,这就成了福特的决策依据。
说到出行一定离不开地图,位于纽约的Citimap开发的社交地图为该领域带来新的活力,它展示的是一个基于社会关系的地图,用户可以在Citimap APP上创造自己的地图并与朋友分享,情侣可以创造他们的幽会地点,买手们可以创建购物地图,美食爱好者可以创造美食地图等等。与O2O相比,这样的地图数据更鲜活,更有针对性。
可以说我们正在经历着大数据的时代,是一次重大的时代转型,其信息风暴正在变革着人们的生活、工作和思维。在这场革新中我们会遇到困难,比如数据安全,隐私问题。但随着各项制度的明确,政府的推动和企业的自律,相信在我们未来的生活中,感受到更多的是大数据为我们生活带来的便捷和舒适。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23