
大数据时代,隐私保护比信息挖掘更重要
伴随着《纲要》的发布,中国大数据发展将迎来顶层设计,正式上升为国家战略。不论我们称之为大数据时代、互联网时代,还是物联网时代、智能穿戴时代,它们之间都有一个共同的特征,就是信息数据化。当人与物都被数据化之后,就意味着巨大的商机蕴藏到了这些数据中间,而国务院所出台的这个关于大数据的指导意见也足以证明大数据的价值。
面对大数据所蕴含的巨大价值,我并不担心其商业价值挖掘不出来,担心的是如何把握好商业挖掘的尺寸与公民隐私权之间的关系。今天,大数据的商业化已经形成。当我们通过PC登录或者访问了相关的网站,浏览了某些信息的时候,我们在电脑上的这种行为都将被记录下来。当我们再次登录一些网站,打开相关页面的时候,一些“牛皮癣”广告就会被推送到我们的眼前。
那么,有谁在推送这些“牛皮癣”广告的时候征求过用户的意见?追踪用户使用行为的商业挖掘边界到底在哪里?这些问题或许比当前推动大数据商业挖掘来说更为重要。
首先,从目前的实际情况来看,大数据商业的前端很繁华,而商业后端的法律法规则相对滞后。过度的商业化挖掘,如果在没有相关隐私权保障的情况下发生,必然会招致用户的反感。那么,商家到底应该将数据商业化到什么程度,这个尺度如何把控,也就成为当前有关部门着重关注的焦点问题。
其次,对于企业来说,哪些数据是可以挖掘,哪些数据在商业化中是不能挖掘的;对于行政部门来说,什么部门可以拥有什么样的数据使用权限……这些都存在着关键尺度问题。如果相关法律法规和政策能够及时出台,那么公民隐私安全问题就可以缓解很多;反之,如果这个指导规范一直出不来,那么公民隐私就很危险了。
尤其是在智能穿戴时代的万物数据化之后,包括人的一切行为与生命体态特征都被数据化,网络安全、数据安全,就是摆在眼前最急迫、最重大的事情。可以预见,在进入智能穿戴时代,人与物,人与互联网之间的识别关系一定不是当前的这种数字密码,而是更为复杂的生物识别技术,如步态、静脉、视网膜、心率等,借助于可穿戴设备将人与设备连接、绑定在一起。由此通过人的生理特征识别后,建立一种唯一性的身份识别特征和独一无二的ID。
显然,这种识别特征的建议就相对比较安全,尤其是对于金融系统来说,未来的支付就很安全,一旦你的设备被偷了,离开你就自动失效了。深度数据化背后的商业价值将随之放大,而同时被放大的,还有数据安全风险。不过,我们不能因为大数据的安全存在风险,就让科技发展的脚步停下来。
我们需要谨慎地对待数据安全,但亦非谨小慎微。就像我们知道网络网银不安全,但我们还是会谨慎地用,此时对于银行等机构来说就是如何通过技术来最大限度地保障用户财产安全;我们知道美国枪支泛滥,但很多人依然很“向往”美国,此时对于美国政府来说就是如何通过法律法规来杜绝这些案件的发生。面对大数据也是如此,需要政府提高监管的水平和方式,尽可能地把犯罪的风险系数和危害降到一个合理的范围。当然社会上总有一些人想着赚歪门邪道、旁门左道的钱,这就是需要政府作为的问题,怎样有效控制。尽管目前我们还没有完全进入大数据时代,但相关的弊端、问题与安全风险已经或多或少地初露端倪。
随着国务院关于大数据文件的出台,一方面会加速大数据产业的形成,也必然会加速商业价值的挖掘。但是在这个过程中,我们尤其不能忽略了对公民隐私权的重视。所以,发展大数据产业很重要,但对于公民来说或许保护比挖掘更为重要。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23