
快递旺季来临 大数据如何推动快递信息化
随着节日的到来,快递行业进入一年中最旺的季节。借助大数据分析,利用互联网工具优化快递流程、缩减物流成本、使得消费者获得更好的物流服务和体验,快递企业已经从低端劳动力密集型,向互联网高端管理转变。
电子面单
电子面单是一种高效率、环保的信息化面单。不同于以前快递包裹上的三联单或四联单。贴在包裹上的电子面单,全部是电脑打印,有的还有二维码标识,背面的不干胶使得消费者轻易可以撕下来。有了电子面单,一个包裹才能在上亿件包裹中被识别、处理、配送。
通过数据的流转,电子面单系统可以自动串联发货商家、送货快递公司、收货消费者以及干支线路的数据信息。基于电子面单串联的数据,可对快递链路进行一系列优化。
今年8月,国内排名前15的快递公司全部实现了电子面单的普及使用,这意味着占全国电商市场份额90%以上的主流快递企业全部完成了快递基础业务的信息化,大数据产品已经成为快递企业的标准配置。
据圆通、中通等快递企业的数据显示,使用电子面单,发货速度能提升30%以上。根据德邦快递的使用后的数据对比,录单效率提升了15倍。
大数据路由分单
根据目前快递企业收件路径,来自全国各地的大量包裹先集中到分拨中心,再按照收货地址将包裹归类后分拨往下一网点。
分拨中心流水线上会有大量的分拣员,他们需要看着包裹上的地址信息,凭记忆确定包裹下一站到达哪个网点,这个过程至少需要3-5秒。
“大数据路由分单”就好比人们出行时用到的高德地图,通过对海量的地址进行大数据分析,结合互联网地图的空间定位技术,可用数据实现包裹跟网点的精准匹配,准确率达98%以上,随着大数据沉淀,可向100%接近。
据中通和圆通等快递公司的数据显示,快递公司启用大数据路由分单后,分单的速度从3-5秒每单,下降到1-2秒每单,仓库分拣效率普遍提高50%以上。根据大数据路由的计算原理,订单一产生,就能够知道派送的网点,未来可帮助快递公司做网点派件量预报。
根据大数据处理产生的4级地址库,可以匹配消费者的配送地址到结构化的乡镇或是街道。有了这些架构化的地址讯息,就可以对揽件和派件地址进行精准定位,为快递员提供更精准的线路规划和配送分派。
“超时异常件”管理
快递公司的烦恼是什么?就是无法正常配送的“超时异常件”,即48小时尚未完成派送的包裹。通过大数据,将这些包裹订单数据筛选出来,可以帮助快递企业及时了解自己产生了多少“超时异常件”,哪个网点最严重,并通过订单及时了解原因,有针对性地着手改善。
目前,申通、中通、圆通、百世汇通等快递公司已经开始推广这个技术。据圆通快递介绍,运营了4个月之后,“超时异常件”的比例下降了30%。
物流预警雷达
物流预警雷达可以通过大数据对包裹量进行提前预测,来引导商家备仓发货,帮助快递公司调配运能能力资源,在“双11”这类旺季单量剧增的时候可以起到一个核心协调枢纽的作用。目前,国内已经有15家快递公司使用这一预警系统。在过去的两年“双11”,预警雷达成功地保障了海量包裹的有序顺利送达。
大数据反炒信系统
网购最难辨识的就是商家的信誉,虚假好评给消费者网购带来了很大困扰。如何杜绝商家刷单?大数据反炒信系统,控制好网购的最后流程、物流环节,对物流订单的流转数据进行全程监控,并且根据炒信订单特征,自动识别炒信运单号以及应对商家的商品订单。
未来,大数据越来越渗透到快递业务的每一个环节,成为快递的基础设施。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23