
国庆出行之路这么堵,大数据为何失灵
如今大数据被赋予了神一样的能量,好像只要是大数据当道就可以解决一切难题。这种想法显然不对,即便大数据可以帮助我们了解的更多,也不能预测到我们想象中的程度。
智能手机已经很普及,大多数的人们都拿着具有定位功能的手机,而4G网络又是这样的覆盖广泛,以至于我们每个人的行动时时刻刻都被运营商、互联网应用提供商所“监控”,这些数据被整合脱敏之后可以成为大数据分析的基本信息来源,从而为交通和出行提供管理上的帮助。
媒体报道,2006年,斯德哥尔摩与IBM合作,在通往市区的18个路段安装了传感器和照相机。搭载了感应装置的汽车在通过该路段时,系统会自动识别该车辆,并对其征收通行费。没有搭载感应装置的汽车通过该路段时,系统会自动识别照相机拍摄的车头照片上的车牌号码,确认汽车所有者,并对其征收通行费。该系统实施后,斯德哥尔摩市区交通量降低了25%,二氧化碳排放量减少了14%。
我们很多人都乐观的估计,主要信息足够,通过大数据分析来实现的智慧交通系统就会帮助我们做出理性的规划,从而,路路畅通。
理想很美好,可现实却很残酷。即便是各部门的大数据应用都起到了作用,国庆节出行的道路却依然拥堵,且没有任何改善的迹象。很多人都体会了10月1日各地道路上的堵车盛况,甚至有乘客下车在高速路上开始遛狗。在这一刻,大数据选择了失灵。
实际上,很多公司通过大数据已经对交通拥堵做出了预测。比如,全国最堵的京藏高速预计从30号到1号下午拥堵超过24小时,十一的返程高峰会出现在长假结束前一天下午3点到长假最后一天的23点。但这些数据都没有能够帮到很多人,大多数人还是会一如既往的走上拥堵的道路。
大数据肯定不是万能的,即便再强,也只是基于现实数据进行的一种分析,可以给我们提供参考,但这种参考的价值却不应该被无限制的放大。比如,我们可以提前通过大数据分析进行预警,那条道路会拥堵,会拥堵到什么程度,可如果条条大路都是超负荷的,大数据的提前预警作用也就失效了。
大数据可以帮助我们提前规划路线,避开拥堵的道路,但一旦道路全在拥堵,我们就失去了选择的机会。在这种情况下,“理性的人”应该选择呆在家里,这样就可以让自己不被堵在路上,也不会造成更大的拥堵,这样选择的人多了,道路可能就通畅了。问题是,很多人都这样想,大家都觉得别人会不出行,结果,群体性理性的选择带来了更大的拥堵。还有一种情况是,大家只有这个时候出行,再挤也要去,否则就没有别的机会可以选择。
因此,大数据的分析结果在群体性公共知识的面前,一定会变得毫无意义,甚至会起到负面作用。很多人认为,信息不对称的是导致交通拥堵的重要原因,而在实践中,信息太对称,也一样会导致拥堵。
我们获得的大数据也并非全面,还有很多人并不使用智能手机的定位功能,一些大数据分析公司无法获得数据。斯德哥尔摩是通过在公共交通工具上安装传感器,分析这些传感器数据,来掌握道路的拥挤情况,这种方式对城市道路很实用,而对于高速公路来说,目前大数据分析普遍采用的用户个人的智能手机定位数据并不可靠。
大数据分析也是十分复杂科学的工作,任何的理论或操作上的微小失误都可能造成分析结果的被错误使用。即便获得了用户数据,在分析的方法和使用的策略上也存在不足,难以充分发挥大数据的价值,这也造成了分析上的偏差,错误的引导会带来局部更为严重的拥堵。
与此同时,大数据在偶发事件面前也无能为力。在国庆节这样的大车流的情况下,一起偶然发生的交通事故就可以造成蝴蝶效应,由此带来一个路段的拥堵,然后是整个路段的拥堵,接着会造成更多辐射的路段上的连环拥堵的发生。这种事故是不可预测的,其后果也很难提前预知,而节日的道路变通的余地很小,一旦发生突发事件,交通拥堵的严重程度就会超出想象。
实事求是的说,大数据确实可以提升道路管理水平,但大数据却无法解决信息沟通中的群体错位决策,也无法解决超出符合的刚性需求到来的道路绝对拥堵,更没有办法应对随时可能出现的随机性的事故影响。大数据对于节假日期间的交通拥堵问题,绝对是有心无力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04