京公网安备 11010802034615号
经营许可证编号:京B2-20210330
国庆出行之路这么堵,大数据为何失灵
如今大数据被赋予了神一样的能量,好像只要是大数据当道就可以解决一切难题。这种想法显然不对,即便大数据可以帮助我们了解的更多,也不能预测到我们想象中的程度。
智能手机已经很普及,大多数的人们都拿着具有定位功能的手机,而4G网络又是这样的覆盖广泛,以至于我们每个人的行动时时刻刻都被运营商、互联网应用提供商所“监控”,这些数据被整合脱敏之后可以成为大数据分析的基本信息来源,从而为交通和出行提供管理上的帮助。
媒体报道,2006年,斯德哥尔摩与IBM合作,在通往市区的18个路段安装了传感器和照相机。搭载了感应装置的汽车在通过该路段时,系统会自动识别该车辆,并对其征收通行费。没有搭载感应装置的汽车通过该路段时,系统会自动识别照相机拍摄的车头照片上的车牌号码,确认汽车所有者,并对其征收通行费。该系统实施后,斯德哥尔摩市区交通量降低了25%,二氧化碳排放量减少了14%。
我们很多人都乐观的估计,主要信息足够,通过大数据分析来实现的智慧交通系统就会帮助我们做出理性的规划,从而,路路畅通。
理想很美好,可现实却很残酷。即便是各部门的大数据应用都起到了作用,国庆节出行的道路却依然拥堵,且没有任何改善的迹象。很多人都体会了10月1日各地道路上的堵车盛况,甚至有乘客下车在高速路上开始遛狗。在这一刻,大数据选择了失灵。
实际上,很多公司通过大数据已经对交通拥堵做出了预测。比如,全国最堵的京藏高速预计从30号到1号下午拥堵超过24小时,十一的返程高峰会出现在长假结束前一天下午3点到长假最后一天的23点。但这些数据都没有能够帮到很多人,大多数人还是会一如既往的走上拥堵的道路。
大数据肯定不是万能的,即便再强,也只是基于现实数据进行的一种分析,可以给我们提供参考,但这种参考的价值却不应该被无限制的放大。比如,我们可以提前通过大数据分析进行预警,那条道路会拥堵,会拥堵到什么程度,可如果条条大路都是超负荷的,大数据的提前预警作用也就失效了。
大数据可以帮助我们提前规划路线,避开拥堵的道路,但一旦道路全在拥堵,我们就失去了选择的机会。在这种情况下,“理性的人”应该选择呆在家里,这样就可以让自己不被堵在路上,也不会造成更大的拥堵,这样选择的人多了,道路可能就通畅了。问题是,很多人都这样想,大家都觉得别人会不出行,结果,群体性理性的选择带来了更大的拥堵。还有一种情况是,大家只有这个时候出行,再挤也要去,否则就没有别的机会可以选择。
因此,大数据的分析结果在群体性公共知识的面前,一定会变得毫无意义,甚至会起到负面作用。很多人认为,信息不对称的是导致交通拥堵的重要原因,而在实践中,信息太对称,也一样会导致拥堵。
我们获得的大数据也并非全面,还有很多人并不使用智能手机的定位功能,一些大数据分析公司无法获得数据。斯德哥尔摩是通过在公共交通工具上安装传感器,分析这些传感器数据,来掌握道路的拥挤情况,这种方式对城市道路很实用,而对于高速公路来说,目前大数据分析普遍采用的用户个人的智能手机定位数据并不可靠。
大数据分析也是十分复杂科学的工作,任何的理论或操作上的微小失误都可能造成分析结果的被错误使用。即便获得了用户数据,在分析的方法和使用的策略上也存在不足,难以充分发挥大数据的价值,这也造成了分析上的偏差,错误的引导会带来局部更为严重的拥堵。
与此同时,大数据在偶发事件面前也无能为力。在国庆节这样的大车流的情况下,一起偶然发生的交通事故就可以造成蝴蝶效应,由此带来一个路段的拥堵,然后是整个路段的拥堵,接着会造成更多辐射的路段上的连环拥堵的发生。这种事故是不可预测的,其后果也很难提前预知,而节日的道路变通的余地很小,一旦发生突发事件,交通拥堵的严重程度就会超出想象。
实事求是的说,大数据确实可以提升道路管理水平,但大数据却无法解决信息沟通中的群体错位决策,也无法解决超出符合的刚性需求到来的道路绝对拥堵,更没有办法应对随时可能出现的随机性的事故影响。大数据对于节假日期间的交通拥堵问题,绝对是有心无力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09