京公网安备 11010802034615号
经营许可证编号:京B2-20210330
人人都是设计师 看大数据如何影响汽车业
大数据对我们生活的影响,可以说是只有你想不到的,没有它涉及不到的,大数据不仅可以帮助卖方揣摩用户心理使销售量提升,在产品设计方面,对于消费者的诉求设计师们也不得不让步,今天笔者就跟大家小聊一下大数据对于汽车行业的影响。
传统的汽车行业数据来源结构单一、应用不深入,已经无法满足企业的数据需求。而互联网、移动互联技术的快速普及,使车辆行驶过程中上传各种相关数据形成海量数据源,经过大数据统计分析,可以为我们提供准确丰富的参考数据与指导意见。
比如它能够正确的指导汽车制造商对于消费者的消费趋势判断,在产品阶段就制定更符合当下定位群体的外观配置性能,以减少那些不必要的部分,来控制成本和售价。
目前,已经有证据表明,汽车企业会跟踪我们的驾驶路径,对于汽车企业来说这些数据的价值高远远高于销售和售后带来的利润。
大数据帮助工程师设计更好的汽车
福特的工程师们在研发Escape SUV时,就在社交网站上发起对于新车型是使用手动后备箱车门还是自动后备箱车门的讨论,之后通过对讨论数据的收集,发现网友看起来更喜欢自动后备箱车门,而工程师根据这些数据可以对自己的设计更加有自信,也让消费者对品牌更加忠诚。
福特还在硅谷建立了一个实验室,以帮助公司发展科技创新。公司获取的数据主要来自于大约400万辆配备有车载传感设备的汽车。通过对这些数据进行分析,工程师能够了解人们驾驶汽车的情况、汽车驾驶环境及车辆响应情况。利用这些数据,公司可以对汽车的设计进行改良。
大数据也有助于汽车设计师设计出更好的发动机。马自达使用的是Math Works公司设计的模型,利用这种模型,马自达研发了SKYACTIV创驰蓝天车身技术。这种模型让马自达的工程师们“明确地看到发动机的内部结构”,最终,燃油效率和发动机的性能得到了很大的改善。在建造昂贵的模型机之前,发动机设计师还能利用这种模型对新的发动机部件和设计进行测试。
我们隔壁的小朋友日本,根据人们的坐姿给车辆设计了防盗系统。日本先进工业技术研究所根据将人坐着时的身形、姿势和重量分布量化、数据化,把人体屁股特征转化成数据,产生独属于每个乘坐者的精确数据资料,在识别到驾驶员非车主时就会触发安全机制,准确率竟达到98%。
无人驾驶汽车大数据时代的产物
跨界总是能带来颠覆,在汽车制造商们对无人驾驶汽车还处于观望状态时,谷歌已经拥有了自己的无人驾驶汽车。谷歌的无人驾驶汽车采用了与街景车相似的技术,只需向该车的导航系统输入一些信息,它就可以将乘车人带到目的地,人们能控制的就是“开始/停止”按钮。
谷歌的无人驾驶汽车会生成大量数据,有资料显示,谷歌的无人驾驶汽车每秒收集750MB传感器数据,并根据这些数据判断行驶方向和速度,监测前方障碍与事故,并且判断突然出现的人或者动物。
而且基于大数据的分析能力,谷歌的无人驾驶汽车行驶的越多,得到的数据越多,谷歌的汽车将会判断的越准确行为也会越智能。到最后直到你坐上汽车启动引擎与它对话,它便能知晓你心,带你去你想去的地方,使人控制汽车变成汽车控制人。
最后,仅通过大数据对汽车行业改变,就可以看到大数据的力量,它对各行各业的影响也可见一斑。在大数据时代,数据就代表着财富,这就意味着谁优先掌握数据,谁就能把握市场趋势,谁就拥有引爆大数据时代的按钮。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07