京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据调查:企业使用大数据9大现状
围绕着大数据的炒作可谓极其疯狂,这种炒作也在推动着大量的投资进入这一领域。 市场研究公司IDC预计,大数据技术及服务市场的年增长率为27%,到2017年将达到324亿美元。IDC称,大数据市场的这种增长比整体ICT市场增长高出6倍多。
然而尽管资金充裕,但是企业界在渡过了大数据的早期采用阶段之后是否找到了成功之路却并不清楚。为了寻找到明确的答案,研究人员调查了诸多企业的IT经理和管理人员,受访者们分享了他们组织的大数据计划、投资和重点细节。
由NetworkWorld主导实施,IDG五大企业出版物(CIO、Computerworld、CSO、InfoWorld和ITworld)参与的《2014大数据调查》已经找到了一些关键性重点。
这次调查所涉及的企业处于大数据部署的各个不同阶段。有些企业已经实施(19%)或正在实施(25%)大数据项目。其他企业已制定了实施计划——会在未来12个月(16%)或未来13-24个月(16%)实施。其余企业(23%)则尚不确定,它们可能会在未来某个时间实施大数据项目,但目前仍在努力寻找合适的战略或解决方案。
从宏观角度看,大数据对于所有行业中不同规模的企业来说都在变得越来越重要。当被问及大数据计划对企业来说其重要程度如何时,53%的受访企业回答至关重要或者高优先级的,另有34%的受访企业回答为中度优先级。只有12%的受访企业认为大数据计划尚属低优先级项目。
以下是本次调查所发现的其他一些关键要点:
1、企业希望决策更准确,更快速。
为什么要使用大数据?因为它在企业决策的质量和速度方面发挥着至关重要的作用。推动企业投资大数据的两个最普遍的业务目标就是改善决策的质量(59%),以及提高决策速度(53%)。
紧随其后的大数据业务目标排名是改进规划和预测(47%);开发新产品/服务和收入流(47%);提高吸引新客户/客户保留率(44%);以及建立新的业务合作伙伴关系(34%)。
2、越来越多的大企业正进入PB时代。
企业已经积累了与其客户和业务相关的巨大的数据集。在所有接受调查的企业中,目前所管理的平均数据量为164TB。而当被问及在未来12到18个月后他们估计将会管理多大数据量时,受访者所预计的平均数据量为289TB——增长率为76%!
今天,6%的受访企业已经在管理超过1PB的数据;这一百分比在未来12到18个月内将增加到14%。在最大型的企业中(指年收入至少在10亿美元以上者),有31%预计将会管理超过1PB的数据。
3、企业已感觉到数据过载的后果。
当有庞大的数据量涌入企业时,必然会产生很多后果。例如无能力或无法迅速找到所需的信息而失去一些业务(有11%的受访者认为这一情况经常发生,31%认为偶然发生);在制定重要决策时出现延迟(14%经常发生,39%偶然发生);用户因数据而不堪重负(19%经常发生,46%偶然发生);发生数据安全问题(4%经常发生,15%偶然发生)。
4、企业准备投资;ROI现在并非主要的障碍。
调查发现,有限的预算是最紧迫的大数据挑战。在受访企业中,投资充裕的极少。在低端市场,19%的受访企业称其来年在大数据上的花费少于10万美元。而在高端市场,29%的企业称投资将会超过100万美元(其中2%的企业称将会投入1亿美元或以上)。
这些投资将会花在各种不同的大数据相关领域,包括:
●开发或购买软件应用(38%)
●投资购买额外的服务器或存储软硬件(37%)
●使用开源软件框架(例如ApacheHadoop)(30%)
●向云存储服务迁移(28%)
●增加网络带宽(27%)
●向云分析服务迁移(26%)
然而尽管大数据预算是最常见的担忧,但是ROI却并非紧迫问题。只有26%的受访企业认为投资的ROI是目前主要的障碍。
5、企业感觉大数据人才短缺。
企业担忧能否找到所需要的合适人才——例如知识工人、数据科学家——来执行企业大部分的大数据计划。在员工方面,34%的企业正在招募具备分析技能的人才,26%的企业考虑将外聘大数据专家。
当被问及在未来12到18个月内企业计划雇佣具备哪些技能组合的人才时,数据科学家占据首位(27%),其后依次是数据架构师(24%),数据分析师(24%),数据可视化专家(23%),业务分析师(21%),研究分析师(21%),主任分析师或分析经理(19%),以及数据库程序员(19%)。
6、数据的安全性成问题,但并非最紧迫问题。
预算有限和人才奇缺是最紧迫的两个大数据挑战。此外,受访企业还列举出了安全问题(35%),开发时间(35%),遗留问题如现有工具的集成(33%),糟糕的数据质量(32%),以及整合或分析实时数据的困难(30%)。
关于安全的话题,近半的受访企业(49%)表示其已有的安全解决方案和产品已可提供适当的大数据安全。29%的受访企业表示现有解决方案和产品不适用于大数据,22%的企业表示不知道。
7、什么较困难:是业务整合还是文化采纳?
研究人员在问及受访企业将大数据计划整合进组织的业务流程和文化时是否具备挑战性时,根据答复为极具挑战性或非常具有挑战性的不同,文化整合(54%)以微弱多数略微领先于业务流程整合(50%)。
8、IT部门主导大数据计划,但成功与否取决于跨职能部门的合作。
IT部门主导大数据项目是受访企业中的常态:46%的受访企业称高层IT经理主导其大数据项目。
但IT高管并非在单干:36%的企业称业务领导人也在参与。此外,受访者表示,其大数据项目受到CEO支持(比例为47%)或LOB支持(34%)。IT领导和业务领导都同意,当双方针对某些具体的业务挑战而合作时,大数据项目才有可能获得最好的成功。
9、对很多企业来说,发展动量将会持续。
展望未来,将近一半的受访企业(48%)认为未来三年内大数据的使用将会在企业内部广泛展开,另有26%的企业认为大数据会在一个或多个业务部门成为主流应用。只有5%的受访企业认为大数据计划会随着炒作的消失而消失,另有5%的企业回答不知道。其余16%的企业预计会试用大数据,但不会在主流生产中使用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20