
别让大数据成“大箩筐”
对于大数据标准研制在中国的发展情况,中国电子技术标准化研究院(以下简称电标院)近日发布的《大数据标准化白皮书》(以下简称白皮书)指出,全国信息技术标准化技术委员会(TC28)持续开展数据标准化工作,在元数据、数据库、数据建模、数据交换与管理等领域推动相关标准的研制与应用,为提升跨行业领域数据管理能力提供标准化支持。具体而言,全国信标委于2012年成立了非结构化数据管理标准工作组,对口ISO/IECJTC1SC32WG4。全国信标委云计算标准工作组目前正在开展大数据存储和分析应用的研究工作,旨在研究大数据存储和分析技术的应用分析、技术框架和标准研究等。全国信标委SOA分技术委员会负责面向服务的体系结构(SOA)、Web服务和中间件的专业标准化的技术归口工作,并协助全国信息技术标准化技术委员会承担国际标准化组织相应分技术委员会的国内归口工作。
另外,全国信息安全标准化委员会(TC260)是在信息安全技术专业领域内,从事信息安全标准化工作的技术工作组织。委员会负责组织开展国内信息安全有关的标准化技术工作,技术委员会主要工作范围包括:安全技术、安全机制、安全服务、安全管理、安全评估等领域的标准化技术工作。全国信安标委目前正开展大数据安全技术、产业和标准研究,为大数据的安全保障提供支撑。
呼吁设立标准工作组
现有标准适用于大数据,提供了一定基础,但缺乏整体规划,呼吁设立标准工作组。
在研究提出大数据技术框架的基础上,结合数据全周期管理,数据自身标准化特点,当前各领域推动大数据应用的初步实践,以及未来大数据发展的趋势,白皮书提出了大数据标准体系框架,即大数据标准体系由六个类别的标准组成,分别为:基础标准,数据处理标准,数据安全标准,数据质量标准,产品和平台标准及应用和服务标准。
通过对现有各类标准情况进行分析,白皮书认为,一方面,从技术标准上来看,大数据相关的技术标准具有一定的工作基础。在数据整理方面,我国已经研制的一些相关标准,同样适用于大数据环境,目前急需加强这类标准的推广应用;数据分析是大数据的特点和难点,标准较为缺乏;在数据访问方面,目前在研多项数据库、云数据存储和管理类标准,适用于大数据底层数据接口,但是尚缺乏数据导入、导出类标准;数据安全方面,部分现有标准适用,但是尚缺乏针对大数据的安全框架、隐私、访问控制类标准;数据质量是大数据应用和发展的基础,目前有多项在研标准,但是均尚未发布,较为缺乏。
另一方面,针对大数据产品和平台,目前在研多项数据库、非结构化数据管理产品类标准,尚无针对大数据可视化工具、数据处理平台的标准;在大数据环境下,数据也已成为产品,而针对开放数据集、数据服务平台等新兴产品和服务形态,尚缺乏相应的标准。
因此,针对大数据,我国在数据管理、云计算、信息安全等方面,已经发布和在研一些标准,适用于大数据环境,提供了一定的基础,但是缺乏标准化整体规划;数据分析、数据安全、数据质量管理等技术标准,数据处理平台、开放数据集、数据服务平台类新型产品和服务形态的标准较为缺乏,急需研制。
大数据标准化工作是支撑大数据产业发展和应用的重要基础。目前国际、国内大数据标准化工作都刚刚起步,白皮书建议尽快成立大数据标准化工作组,吸纳国内产学研用各方面的力量,国内、国际标准化工作同步发展,梳理国内各方面成果,系统地研究国际先进成果,适时参与国际标准化工作。建议加强大数据标准化顶层设计,从产品、技术、安全、管理、应用等多个角度梳理大数据标准需求,认真分析智慧城市、云计算、移动互联网等相关领域与大数据的关系,建立健全大数据标准体系,重点突破一批涉及大数据发展的基础性、方法性、公共性标准的研制,为大数据发展和应用夯实标准化基础。梅宏也呼吁,有必要设立大数据技术与应用标准工作组,整合各方力量从而形成合力,构建统一的大数据标准体系。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01