京公网安备 11010802034615号
经营许可证编号:京B2-20210330
别让大数据成“大箩筐”
对于大数据标准研制在中国的发展情况,中国电子技术标准化研究院(以下简称电标院)近日发布的《大数据标准化白皮书》(以下简称白皮书)指出,全国信息技术标准化技术委员会(TC28)持续开展数据标准化工作,在元数据、数据库、数据建模、数据交换与管理等领域推动相关标准的研制与应用,为提升跨行业领域数据管理能力提供标准化支持。具体而言,全国信标委于2012年成立了非结构化数据管理标准工作组,对口ISO/IECJTC1SC32WG4。全国信标委云计算标准工作组目前正在开展大数据存储和分析应用的研究工作,旨在研究大数据存储和分析技术的应用分析、技术框架和标准研究等。全国信标委SOA分技术委员会负责面向服务的体系结构(SOA)、Web服务和中间件的专业标准化的技术归口工作,并协助全国信息技术标准化技术委员会承担国际标准化组织相应分技术委员会的国内归口工作。
另外,全国信息安全标准化委员会(TC260)是在信息安全技术专业领域内,从事信息安全标准化工作的技术工作组织。委员会负责组织开展国内信息安全有关的标准化技术工作,技术委员会主要工作范围包括:安全技术、安全机制、安全服务、安全管理、安全评估等领域的标准化技术工作。全国信安标委目前正开展大数据安全技术、产业和标准研究,为大数据的安全保障提供支撑。
呼吁设立标准工作组
现有标准适用于大数据,提供了一定基础,但缺乏整体规划,呼吁设立标准工作组。
在研究提出大数据技术框架的基础上,结合数据全周期管理,数据自身标准化特点,当前各领域推动大数据应用的初步实践,以及未来大数据发展的趋势,白皮书提出了大数据标准体系框架,即大数据标准体系由六个类别的标准组成,分别为:基础标准,数据处理标准,数据安全标准,数据质量标准,产品和平台标准及应用和服务标准。
通过对现有各类标准情况进行分析,白皮书认为,一方面,从技术标准上来看,大数据相关的技术标准具有一定的工作基础。在数据整理方面,我国已经研制的一些相关标准,同样适用于大数据环境,目前急需加强这类标准的推广应用;数据分析是大数据的特点和难点,标准较为缺乏;在数据访问方面,目前在研多项数据库、云数据存储和管理类标准,适用于大数据底层数据接口,但是尚缺乏数据导入、导出类标准;数据安全方面,部分现有标准适用,但是尚缺乏针对大数据的安全框架、隐私、访问控制类标准;数据质量是大数据应用和发展的基础,目前有多项在研标准,但是均尚未发布,较为缺乏。
另一方面,针对大数据产品和平台,目前在研多项数据库、非结构化数据管理产品类标准,尚无针对大数据可视化工具、数据处理平台的标准;在大数据环境下,数据也已成为产品,而针对开放数据集、数据服务平台等新兴产品和服务形态,尚缺乏相应的标准。
因此,针对大数据,我国在数据管理、云计算、信息安全等方面,已经发布和在研一些标准,适用于大数据环境,提供了一定的基础,但是缺乏标准化整体规划;数据分析、数据安全、数据质量管理等技术标准,数据处理平台、开放数据集、数据服务平台类新型产品和服务形态的标准较为缺乏,急需研制。
大数据标准化工作是支撑大数据产业发展和应用的重要基础。目前国际、国内大数据标准化工作都刚刚起步,白皮书建议尽快成立大数据标准化工作组,吸纳国内产学研用各方面的力量,国内、国际标准化工作同步发展,梳理国内各方面成果,系统地研究国际先进成果,适时参与国际标准化工作。建议加强大数据标准化顶层设计,从产品、技术、安全、管理、应用等多个角度梳理大数据标准需求,认真分析智慧城市、云计算、移动互联网等相关领域与大数据的关系,建立健全大数据标准体系,重点突破一批涉及大数据发展的基础性、方法性、公共性标准的研制,为大数据发展和应用夯实标准化基础。梅宏也呼吁,有必要设立大数据技术与应用标准工作组,整合各方力量从而形成合力,构建统一的大数据标准体系。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20