京公网安备 11010802034615号
经营许可证编号:京B2-20210330
公路数据价值大 分析挖掘助运营升级
智能交通建设带了了很多的便利,同时也产生了大量的数据,对于这些数据如何处理成为一大难题。针对公路数据,本身有着非常大的价值,但是数据挖掘工作并不简单,该从哪些方面着手,又将为公路运营带来什么好处?看看专家们是怎么想的。
近年来,"大数据"风靡一时,各行各业都在探讨"大数据"思维与技术在本行业的应用。高速公路是否可以应用"大数据"解决相关问题呢?
近期,由中国公路学会主办的第十六届中国高速公路信息化研讨会暨技术产品展示会在山东青岛召开,不少代表对大数据在交通运输行业的应用提出了自己的精彩见解。
公路海量数据潜在价值巨大
据了解,学界将大数据特点归纳为4个"V",即Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。事实上,以前并非没有数据挖掘,而"大数据"理论则与传统的数据挖掘存在差异。
西安公路研究院姬建岗介绍说,传统数据挖掘采用的数学方法通常是找到一些自变量与因变量的关系,形成一个因变量与一系列自变量的因果关系,建立一个方程式,继而进行结果的计算。而"大数据"恰恰是对上述结果的逆向求解,即通过大量数据找到关联,再去寻找其中蕴含的关系式。大数据是"知其然而不必知其所以然",外行通过大数据分析可以打败内行。
长安大学教授许宏科则介绍说,当数据取得时,可能是杂乱无章、看不出规律,但运用作图、造表、各种形式的方程拟合、计算某些特征量等手段便可找出数据的规律性。
高速公路营运数据量大,大数据分析大有可为,这成为了专家们的共识。据了解,江苏省高速公路2013年联网收费流水数据就达6.94亿条。在姬建岗看来,高速公路的数据可以分为收费数据、交通监控数据、指挥调度数据、日常运营数据。
此外,还有相关的第三方数据,例如公安交警数据、路政数据、地方道路数据、车辆维修点及周边医院数据等。这些数据体量大、类型多,足以支撑起行业应用大数据来解决相关问题。
数据挖掘可甄别逃费车辆
山东省交通运输厅高速公路收费结算中心徐清峻介绍了如何应用数据挖掘实现收费稽查的目的。据了解,山东省专门建设了一套稽查平台。该平台根据设定的算法,定期对全省联网收费数据集中进行逐条甄别,对于符合逃费特征的车辆进行标识和汇总,继而自动提醒相关部门和各收费站。
"算法很关键。"徐清峻分析说,看似正常的一条条车道业务流水,哪些车辆具有逃费嫌疑呢?单条流水自然无法判定,需要结合多条车道,但山东省高速公路每个月产生约五千万条的收费数据,海量的收费流水数据让人晕头转向。
数据挖掘可甄别逃费车辆
为此,他们首先分析各种能够成功偷逃通行费的行为特征,继而构建能甄别这些数据的唯一算法,这样就能通过系统找出嫌疑车辆。当然最终确认仍需要通过现场验证。
与此类似,福建省高速公路监控中心主任王辉也介绍了数据挖掘在高速公路逃费稽查中的应用。据介绍,他们基于福建高速公路的网络特点及数据分布状况,研制了"高速公路逃费稽查电子辅助系统",该系统于2013年11月通过了福建省交通运输厅组织的科技成果评审,获得专家们的高度评价。
"大数据"离不开"云计算"
近年来,与"大数据"一道,"云计算"也成为流行的热门词汇。
据了解,"云计算"是将计算任务分布在大量计算机构成的资源池上,使各种应用系统能够根据需要获取计算力、存储空间和信息服务。在许宏科看来,"大数据"的应用需要"云计算"助力。
许宏科分析说,围绕大数据,一批新兴的数据挖掘、数据存储、数据处理与分析技术将不断涌现,因此处理海量数据更加容易、更加便宜和迅速。大数据的处理技术正在改变目前的计算机运行模式,大数据的存储和管理要求,使得云数据库的建立成为必要条件。
据介绍,2014年交通运输部开展的交通运输科技计划项目中的信息化技术研究计划,将基于云计算的交通运输数据交换与处理关键技术、综合交通运行监测与信息服务关键技术作为一个重要方向。
数据安全需行业标准
姬建岗同样也指出了高速公路应用大数据分析所面临的一些问题,例如,对数据的实时分析要求较高,包括用户消费查询、车预警信息发布,往往要求在数秒内得到分析结构,否则将影响用户体验和快速准确的信息发布;数据过于分散,营运数据的编码与存储过于分散,系统耦合度低,各自处理相关的数据,关联度太低;需要专业的数据分析系统及强有力的系统集成商,现有高速公路运营系统普遍感觉到实时分析能力差、海量数据处理效率低、缺少分析方法;上线大数据存储与分析系统需要资金投入。
此外,数据安全与隐私保护也必须纳入视野。姬建岗分析说,大量的营运数据被统一处理,怎样保护用户数据的隐私或商业利益,需要行业制定严格的交互标准。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20