京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据是怎么产生的 它的商业机会在哪
近些年,大数据已经和云计算一样,成为时代的话题。大数据是怎么产生的,商业机会在哪?研究机会在哪?这个概念孕育着一个怎样的未来?
昨天在车库咖啡参加了一个小型的研讨活动,就这些问题进行了一些讨论,我结合自己的一些理解做一个总结。
首先,大数据是怎么产生的?
1)物理世界的信息大量数字化产生的
例如刘江老师指出的好大夫网,将医生的信息,门诊的信息等数字化。其实还有很多,比如新浪微博将茶馆聊天的行为(弱关系产生信息数字化),朋友聊天的行为数字化(强关系产生信息数字化)。视频监控探头将图像数字化。
2)社交网络产生的
在雅虎时代,大量的都是读操作,只有雅虎的编辑做一些写操作的工作。进入web2.0时代,用户数大量增加,用户主动提交了自己的行为。进入了社交时代,移动时代。大量移动终端设备的出现,用户不仅主动提交自己的行为,还和自己的社交圈进行了实时的互动,因此数据大量的产生出来,并且具有了极其强烈的传播性。
3)数据都要保存所产生的
一位嘉宾指出,旧金山大桥保留了百年的历史数据,在时间跨度上产生了价值,很多网站在早期对数据的重视程度不够,保存数据的代价很大,存储设备的价格昂贵,但是时代变了,存储设备便宜了,用户自己产生的数据得到了重视,数据的价值被重视了。因此越来越多的数据被持续保存
其次,大数据和大规模数据的区别?
big data之前学术界叫very large data,大数据和大规模数据的差距是什么?我认为在英文中large的含义只是体积上的,而big的含义还包含重量上的,价值量上的。因此我认为
1)大数据首先不是数量上的堆砌,而是具有很强的关联性结构性
比如有一种数据,记录了世界上每一颗大树每年长高的程度,这样的数据不具有价值,因为只是简单堆砌。
如果数据变成,每一个大树记录它的,地点,气候条件,树种,树龄,周边动植物生态,每年长高的高度,那么这个数据就具有了结构性。具有结构性的数据首先具有极强的研究价值,其次极强的商业价值。
在比如,淘宝的数据,如果只记录一个交易的买家,卖家,成交物品,价格等信息,那么这个商业价值就很有限。淘宝包含了,买家间的社交关系,购物前后的其他行为,那么这个数据将非常有价值。
因此,只有立体的,结构性强的数据,才能叫大数据,才有价值,否则只能叫大规模数据。
2)大数据的规模一定要大,而且比大规模数据的规模还要大
要做一些预测模型需要很多数据,训练语料,如果数据不够大,很多挖掘工作很难做,比如点击率预测。最直白的例子,如果你能知道一个用户的长期行踪数据,上网的行为,读操作和写操作。那么几乎可以对这个人进行非常精准的预测,各种推荐的工作都能做到很精准。
最后,大数据的机会在哪里?对小公司的机会在哪?
围绕数据的整个产业链上,我认为具有以下机会
1)数据的获得
大量数据的获得,这个机会基本属于新浪微博等这类大企业,大量交易数据的获得,也基本属于京东,淘宝这类企业。小企业基本没机会独立得到这些用户数据。
2)数据的汇集
例如如果你要能把各大厂商,各大微博,政府各个部门的数据汇集全,这个机会将是极大的。
但,这个工作,做大了需要政府行为,做中档了,要企业间合作,做小了,也许就是一个联盟或者一个民间组织,比如中国爬盟。
3)数据的存储
汇集了数据后,立即遇到的问题就是存储,这个代价极大,原始数据不能删除,需要保留。因此提供存储设备的公司,执行存储这个角色的公司,都具有巨大的市场机会,但是这也不属于小公司,或者早期创业者。
4)数据的运算
在存储了数据以后,怎么把数据分发是个大问题,各种API,各种开放平台,都是将这些数据发射出去,提供后续的挖掘和分析工作,这个也需要有大资本投入,也不适合小公司。
5)数据的挖掘和分析
数据需要做增值服务,否则数据就没有价值,big也big不到哪里去,是没有价值的big。因此这种数据分析和挖掘工作具有巨大的价值,这个机会属于小公司,小团体。
6)数据的使用和消费
在数据做到了很好的挖掘和分析后,需要把这些结果应用在一个具体的场合上,来获得回报,做数据挖掘和分析的公司,必须得找到这些金主才行,而这些金主肯定也不是小公司。
大数据未来的形态,或者产业链结构一定是分层的,巨大的,价值的体现发生在各个层次,每个层次都是生态链的重要一环,都孕育着巨大的机遇和挑战,我们能做的唯有努力,做适合自己的工作。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07