京公网安备 11010802034615号
经营许可证编号:京B2-20210330
联想要做“互联网+大数据”实践者
联想要做“互联网+大数据”实践者在服务器、HPC、云计算等企业级业务已经取得巨大进展的联想,又将目光投向了大数据。
提及联想,我们首先想到的可能会是其传统的PC、平板、手机等业务,以及近年来逐渐发力的企业级业务,对于大数据,联想还是一名市场新兵。
实际上,联想在大数据上已经有了数年的耕耘,是一名大数据的实践者。据联想集团副总裁、联想研究院云计算与智能计算实验室主任黄莹介绍,联想内部已经在IT管理、产品反馈、门店管理等多个领域应用了大数据技术,并计划将成熟的方案推向市场。
“互联网+大数据”更具价值
《大数据时代》中写道:“如今,数据已经成为了一种商业资本,一项重要的经济投入,可以创造新的经济利益。事实上,一旦思维转变过来,数据就能被巧妙地用来激发新产品和新型服务。”
没错,数据是当今企业最为宝贵的财富,故而“大数据”成为当前最热门的话题,大数据及分析被视为企业变革、获得更强竞争力的有效手段。
不过,就像历史上的很多新生事物都会经历过质疑和争论,在对“大数据”的认知上也存在着一些误区。很多时候我们认为BI就是大数据、“数据仓库+Hadoop”就代表着大数据,然而并非如此。
联想集团副总裁、联想研究院云计算与智能计算实验室主任黄莹指出,大数据技术的价值在于能快速且基于事实的支持决策而产生巨大的商业价值。相比传统的BI,大数据的数据来源要更加广泛,不仅包括CRM、ERP、网店交易或会计账簿等传统企业数据,也包括网页日志、智能电表、制造传感器、设备日志、交易系统数据等机器或传感器数据,同时还包括具有时代特色社交媒体数据,如客户评论、微博和社交平台等。
“互联网与传统企业结合单一的企业数据仓库或者单一的互联网大数据平台无法满足企业发展需要,结合企业传统数据与物联网、自然语言等技术,互联网+大数据平台应运而生”,黄莹表示。
联想集团研究院大数据总监郭炜补充说,“数据仓库+Hadoop”并不等于大数据,“在网上的数据”才是真正的“互联网+大数据”:“现在设备采集的数据、互联网对话的数据,甚至是跟用户交互的点击流和线下的行为轨迹流,都是要纳入企业数据平台的。企业在设计大数据平台的时候,一定要考虑将用户交互的数据都纳入到企业的大数据平台上。”
如今,联想所从事的就是“互联网+大数据”平台的建设。据黄莹介绍,其中包括与传统企业系统对接,通过“爬虫”技术获取社交大数据来倾听客户体验,跟踪企业最新动态、加盟开源社区,基于大数据特殊应用需求定制软硬件解决方案等多个层面。
郭炜表示,从数据获取、再到存储、处理、展现、加工、挖掘,再形成用户画像,联想内部在使用着一整套的解决方案。
做“互联网+大数据”实践者
联想虽然是一名大数据领域的新兵,但对大数据有着清晰的认知,并且在内部已经开始了大数据实践。
例如,联想在互联网“爬虫”技术上有着多年的积累,并通过模拟用户行为、转换Cookie等技术来增强“爬虫”的能力。通过“爬虫”,联想能够将合作的电商平台,如京东、亚马逊、淘宝上有关联想产品的数据“爬”下来,第一时间获得用户的反馈信息、并能够将这些数据快速反馈给产品经理。
“通过对大数据进行分析、比较集中的用户信息反馈,比如电脑、笔记本跟屏幕相关的,或者是一些零部件的信息,怎么样把电脑设计得更加符合用户的使用习惯。比如有的用户是打游戏,我们就会在这个方面进行加强,在做产品定位的时候可以更加确切。这样的案例有很多,对联想产品更贴近用户产生了很大的价值”,黄莹表示,“互联网+大数据”让联想能够“聆听客户声音”,对联想改进产品有着重要意义。
在IT资源管理方面联想也应用了大数据技术。据黄莹介绍,联想大数据部门和IT部门一起协作,采集分布在世界各地数据中心的网络数据,然后分析产生价值:“如果将某一个应用布到某一个数据中心,它可能会对已有应用产生影响。我们可以通过大数据分析模拟,计算出对现在的带宽产生什么样的影响,可以对分析决策产生帮助。”
再如,联想有很多门店,过去都是用人工进行管理,这样导致的效果是低效的,决策者看不到真正发生了什么事情。如今联想建立了门店管理的大数据解决方案,联想内部的相关业务部门先跟门店进行合作,积累了比较好的经验以后再变成类似的方案,也可以分享给其他的合作方。
如今,联想的大数据方案已经初现雏形,据黄莹介绍,从爬虫技术、自然语言处理、底层大数据处理工具的平台化设计,比如Hadoop、Spark、数据清洗,以及一些数据可视化的工作,联想或者已经在实验室平台上实现,或者已经被联想业务部门应用起来。同时,定价、营销、供应链的分析等大数据方案也已经投入业务部门使用。
“在内部实施比较成功的大数据方案,联想计划将其包装成其他企业能够应用的方案付诸商用”,黄莹表示。
——从服务器、云计算、HPC,再到如今的大数据,联想在企业级市场逐渐发力。从联想大数据的应用实践、以及对大数据整体解决方案的构建不难看出,联想企业级解决方案提供商的角色已经更加鲜明。
在大数据领域,联想的优势在于有着齐全的终端设备,有着大量收集数据的渠道;具有丰富的软硬件,以及广泛的合作伙伴,具有构建大数据整体解决方案的良好基础;同时联想进行了大量的内部大数据实践,本身就是大数据的受益者,这为构建大数据方案提供了经验。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16