京公网安备 11010802034615号
经营许可证编号:京B2-20210330
中国普天构建“智慧”4G业务大数据支撑体系
随着4G和移动互联网时代的到来,中国移动互联网业逐渐步入大数据时代,同时也开启了行业发展的“数字金矿”。中国普天所属企业东信北邮信息技术有限公司(简称普天东信北邮)立足于电信、移动互联网领域的大数据现网实践,应用数据采集、数据加工、分布式计算、数据挖掘、可视化展示等技术,打造直接具备生产能力、实时能力、决策能力、开放能力的智慧型BI产品体系,释放大数据价值。
在4G环境下,业务的典型特征是容量大、速度快、实时性视频传输稳定,更适合移动互联网时代用户的业务需求,同时也对流量管控、流量服务、用户行为分析等精准化运营提出更高要求。针对这些特征与趋势,普天东信北邮提出“一个平台,四个体系”的4G业务大数据支撑体系管理理念,提供以大数据为基础的智能、灵活、开放的运营支撑平台,实现4G业务数据采集、存储、计算,能有效支撑上层应用。
其中,“一个平台”即指打造海量数据采集、计算、管理、应用支撑的大数据平台,实现决策支撑和数据生产。整合运营商通信、计费、云存储等基础能力和分散在传统业务中认证、适配等业务能力,以及用户统计级行为数据,形成运营商独有的产业平台,并将能力和数据开放,实现电信产品和服务的延伸。
“四个体系”则包括构建基于用户共享的用户行为分析体系;构建个性、实时、一体化流量服务体系;基于大数据分析,实现流量智能管控支撑体系;建立“大数据、超细分、微营销”营销服务支撑体系。
构建基于用户共享的用户行为分析体系
流量共享是4G业务主要特征之一,由此衍生多用户共享、多终端共享的群体性行为,且流量使用者和购买者出现隔离。东信北邮针对该行为特点,建立多终端分析体系、购买者和使用者协同分析体系。其中,多终端分析体系引入UA信息,弥补以IMEI为核心的手机终端分析体系的不足,建立全终端分析体系,满足4G和移动互联网时代多终端接入的需求。购买者和使用者协同分析体系则基于用户真实使用终端,通过对用户位置、时间、交往圈、UA等信息多层筛选,还原真实使用者号码,解决特定产品(购买者和使用者可分离)营销分析难题,形成了基于购买者和使用者协同分析的创新营销分析模式。
构建个性、实时、一体化流量服务体系
构建个性、实时、一体化流量服务体系,有效解决用户流量类投诉和咨询,提升4G和移动互联网时代用户体验与满意度。
东信北邮针对流量投诉场景,采用“三步走”策略,向客服人员提供套餐使用情况、流量结构分析和流量清单查询,逐层剖析流量使用情况,解决流量投诉和质疑。
基于大数据分析,实现流量智能管控支撑体系
基于用户、业务等分析成果提供PCC智能策略支撑能力,实现互联网智能化QoS运营,力求资源利用率最大化,促进收益最大化。
从精准营销平台、经营分析等应用系统提取分析数据,再结合闭环评估的结果,生成针对流量的营销服务策略、统一交互策略(如PCC流量管控策略)和运营保障策略(如网络优化策略),动态支撑各营销渠道、网络侧PCRF、OSS域网络平台的执行,最终对执行效果和策略进行评估,更新策略中心,实现智能、闭环的策略管理。
建立“大数据、超细分、微营销”营销服务支撑体系
随着4G时代和移动互联网时代的到来,新业务、新产品层出不穷,用户的需求表现出越来越强的个性化特征,未来移动互联网的发展越来越取决于用户需求拉动。而普天东信北邮4G业务大数据支撑体系能够助力用户实现自助分析、智能精准策略匹配、智能化精准化流程以及服务能力整合与输出。即以超细分的用户标签为基础,实现用户群的自助式多维分析和需求探索,培养业务人员自助分析习惯和用户洞察能力;打造策略匹配中心,实现“客户-产品”和“产品-客户”的双向自动超细分的精准策略匹配;通过进一步完善营销规则管理,加强渠道协同及渠道触点的统一管理,既提升营销效率,又促成对用户的合理接触,同时,系统具备数据开放的能力,并向各外部平台提供服务能力。
同时,普天大数据产品的建设基于“半定制化”的理念,具备个性化服务、精细化营销、数据化运营、科学化管理、商业化分享等特点。截至目前,普天东信北邮大数据产品累计服务6.2亿名用户,为4.8亿名用户提供个性化推荐服务,为3.4亿名用户提供精准营销服务。4G业务大数据支撑体系也已在多地落地商用,其中流量经营方案助力浙江移动获得“中国移动2012年流量经营集团竞赛”第一名,并开拓了4G和移动互联网时代产品多终端分析、流量共享创新分析模式,作为优秀模型在全集团推广。未来,普天东信北邮将继续与运营商伙伴开展深入合作,研究并应用大数据关键技术,对移动通信信息服务领域持续生成的业务数据、用户数据和网络数据进行分析挖掘,并将产生的结果应用于业务和支撑系统中,实现对用户行为数据的深入分析和挖掘。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16